
Knowledge Management International Conference (KMICe) 2021, 1 February 2021
http://www.kmice.cms.net.my/

302

Automated Feedback Generation for Automatic Programming
Assessment: Its Conceptual and Initial Analysis of Mapping Studies

Ahmed Abdulsalam Abdulmajeed Al-Athwari1 and Rohaida Romli2
School of Computing, College of Arts and Sciences, Universiti Utara Malaysia, Malaysia, {1ah.alathwari20112@hotmail.com,

2aida@uum.edu.my}

ABSTRACT
A systematic way of handling programming
assignments’ assessment via an automated approach
is highly demanding. Thus, a method that is called
Automated Programming Assessment (or APA) has
been widely utilized to support automated marking
and grading on students’ programming exercises or
assignments. Generating useful and meaningful
feedbacks automatically via APA is essentially
reducing lecturers’ efforts, and students could learn
to identify their own programming mistakes so as
towards the end of learning process they can
themselves achieve certain extend of good quality in
programming. In this paper, we reveal an initial
analysis of a mapping study related to these two
contexts of areas so as to identify the criteria and
matrices used to support automated feedback
generation for more comprehensive features of APA.
A technique known as Systematic Mapping Study
(SMS) was utilized to comprehensively review the
focused studies considering both the fully and semi-
automated APA.

Keywords: Automatic Programming Assessment,
summative feedback, formative feedback,
Systematic Mapping Study, software testing.

I INTRODUCTION
Learning programming languages is extremely
important for university students who pursue their
studies in the fields of Information Technology,
Software Engineering, and Computer Science
disciplines which are known as practical subjects to
improve students’ or learners’ understanding of
programming principles (Lajis et al., 2018).
Renumol , Jayaprakash and Janakiram (2009) quoted
that “programming is the process of writing, testing
and debugging of computer programs using different
programming languages". As to achieve learning
programming efficiently, assessing the quality of
learners’ programming solutions (Insa & Silva,
2018) and providing useful and meaningful
feedbacks are vital. Feedback quality is an important
factor in improving learners’ programming skills
(Buyrukoglu, 2018). Furthermore, feedback helps
students to understand problems and find suitable
way to address them (Buyrukoglu, 2018).

One of the important activities in learning
programming is evaluating students’ assignments
(Insa & Silva, 2018) or is commonly known as
programming assessment. Generally, assessment on
students’ work can be either formative or summative
(Buyrukoglu, Batmaz & Lock, 2016a; Buyrukoglu,
Batmaz & Lock, 2016b). Scriven (1967) stated that
a summative assessment is with regard to the
measurement of students’ learning and their own
achievements in learning. Taras (2005) stated that
the formative assessment is in fact a summary of
assessment that is added to the feedback used by the
learners. Formative assessment is directly related to
enhancement of student education by providing
immediate and periodic feedback (Buyrukoglu et al.,
2016b; Melmer, Burmaster & James, 2008).
Automatic Programming Assessment (or APA)
emerged long time ago and has long history since the
1960s and is still active to research field and also
researchers' focus (Buyrukoglu et al., 2016a). The
main purpose of APA is to implement automated
assessment and provides consistent and effective
feedback to learners for improving their learning in
programming as well as promotes workload
reduction for lecturers (Buyrukoglu et al., 2016a).
Manually marking programming exercises or
assignments is well known as troublesome and
tedious works (Blau, 2015; Huang & Morreale,
2015). In addition, the lecturers face challenges with
assessing efficiently a huge number of students’
assignments (Bey, Jermann & Dillenbourg, 2018;
Blau, 2015; Romli, Sulaiman & Zamli, 2015) and
frustrating to give their students individualized
attention (Blau et al., 2016). Therefore, APA has
become one of choices for assessing students’
programming assignments automatically without the
need of humans’ involvement (Saikkonen et al.,
2001).
Programming assessment is a part of software testing
techniques, which can be categorized as dynamic
testing or static analysis (Lajis et al., 2018; Romli,
Sulaiman & Zamli, 2010; Saikkonen et al., 2001).
Software testing is a process to measure, define,
locate and detect the errors in a program (Latiu et al.,
2012). Static analysis is mainly used to detect and
inspect the errors that are committed has not to prove
the validity of the program (Lajis et al., 2018). On
the other hands, dynamic analysis is performing an

Knowledge Management International Conference (KMICe) 2021, 1 February 2021
http://www.kmice.cms.net.my/

303

assessment for the execution of a program to assess
the style, software metrics and design of programs
(Lajis et al., 2018).
APA together with a function to generate feedback
is to promote effective learning (Buyrukoglu et al.,
2016a). Generating feedback automatically is
essentially to reduce lecturers’ efforts as a part of
assessment as well as it can motivate learners and
guide them to produce a better quality of
programming solutions. According to Romli et al.
(2013), providing immediate feedback for learners in
learning programming lead them to mastery
learners’ levels on programming. Thus, feedback
generation is particularly important in APA systems
(or APAS) that can help students from different level
to enhance their knowledge in programming as well
as avoiding any unfair assessment (Insa & Silva,
2018; Lajis et al., 2018). Also, this feature enhances
the understanding of learners, particularly for
undergraduate studies who are in expansive classes
where lecturers’ time is constrained or limited.
Providing useful and meaningful feedback on
students’ programming exercises and assignments is
necessarily important to develop and enhance
students’ programming skills. Furthermore,
assessing students’ programming manually has been
proved as very cumbersome and may lead to timely
feedback, resulting in significant failure (Lajis et al.,
2018) and it becomes more problematic when the
size of classes is huge. Thus, most of these issues can
be resolved by utilizing APAS. However, there is a
lack of personalized and comprehensive feedback in
existing APAS due to the sheer number of student
submissions precludes the manual assessment option
(Koprinska, Stretton & Yacef, 2015).
Thus, this study intends to review comprehensively
related works that focus on these two context of areas
to reveal on the current state of criteria and matrices
used to support automated feedback generation in
programming assessments or APA. The criteria and
matrices include software testing techniques
covered: static analysis and/or dynamic testing
(white-box and black-box testing), and their
respective quality matrices/factors, types of
assessment feedback (formative and or summative)
and its details, and features included in the APAS.
However, this paper merely reveals some concepts
involved in APA and feedback generation to
highlight among of the common criteria and matrices
applied, some of the review studies done as well as
an initial analysis of the conducted mapping studies.
The content of the remaining sections is organized as
follows: Section 2 discusses related reviews of
selected studies as primary studies. In Section 3, we
describe the applied research methodology of
conducting SMS and the process of collecting

relevant research papers. Section 4 presents the
initial analysis of the conducted SMS. Finally,
Section 5 concludes the paper and provides a brief
discussion of future works.

II RELATED WORK
This section covers the discussion on basic concepts
of software testing and programming assessment,
types of assessment, and their related review studies.
A. Software Testing and Programming

Assessment
Software testing is defined as measuring the quality
of the software products (Latiu et al., 2012) and
involves the process of analyzing a program to
identify errors, playing an essential role to guarantee
and maintain the quality, correctness and reliability
of the software products (Myers, Sendler &
Bandgett, 2011).
Programming assessment is related to the theory of
software testing (Jackson, 1996). Software testing is
commonly the basic concepts applied for tools
related to improving programing analysis and
comprehension skills among students (Souza et al.,
2016). According to Sharma, Banerjee, Vikas and
Mandal (2014) , student programming code can be
statically or dynamically analyzed. In dynamic
testing, it involves an execution of the program code,
and the result is then checked to ensure the
correctness, accuracy and validity of the program
(Buyrukoglu et al., 2016b; Zougari et al., 2016a). For
dynamic testing, the assessment process can be done
by looking at the structure of the code (white box) or
simply based on the functional behaviour of a
program (black box) (Romli et al., 2010).
Programming assessment may use static analysis for
analyzing the program code structurally (Salman,
1999) based on the code’s properties. Static analysis
is a method used to assess students’ programming
solutions without an execution of the code (Rahman
& Nordin, 2007). Among the quality factors applied
in the static analysis include program properties,
proof of its practicableness, and look for errors
within the code (Novikov, Ivutin, Troshina &
Vasiliev, 2017). Also, static analysis has its
assessment criteria such as programming style
analysis, error detection (syntax or semantic or
logic), metric analysis, keyword analysis, structural
analysis, plagiarism detection (Rahman & Nordin,
2007; Zougari et al., 2016a).

B. Types of Assessment
Formative, diagnostic and summative are types of
assessment (Buyrukoglu, 2018). These types of
assessment are very important so as to develop
knowledge of students who learn programming
(Buyrukoglu, 2018; Buyrukoglu et al., 2017).

Knowledge Management International Conference (KMICe) 2021, 1 February 2021
http://www.kmice.cms.net.my/

304

Formative assessment is a type that students can
enhance their knowledge on learning programming
on timely feedback (Buyrukoglu et al., 2016) as well
as allowing students to enhance their thinking or
behaviour in order to develop learning skills (Shute,
2008). Students can understand more deeply in their
learning through formative assessment (Clark,
2011). Formative feedback is an important factor to
help student learning and develop their works
(Keuning et al., 2016).
The purpose of diagnostic assessment is similar to
formative assessment (Buyrukoglu, 2018).
However, diagnostic assessment is to measure the
weaknesses and strengths of students while studying
which can be useful for lecturers to know students’
capabilities in certain knowledge (Conole &
Warburton, 2005).
Meanwhile, summative assessment is a type of
assessment that provides a report on the students
understanding and achievement at the end period of
study (Buyrukoglu, 2018). Most of the APAS and
semi-APAS support both the formative and
summative assessments.
Thus, it can be concluded that summative assessment
is with regard to evaluating of students’ works by
providing results of assessment towards end of the
assessment process, and on the other hand, formative
assessment can be related to providing appropriate
feedbacks based on the results of the evaluation such
that they can develop and enhance their knowledge
or skills on certain learning concepts.

C. Review Studies on Automatic Programming
Assessment and Automated Feedback
Generation

It has been found around ten review studies between
the year of 2009 and 2018 related to APAS and
Semi-APAS that focused on generating feedback. In
terms of the review of APAS, thus far, several
limited review studies had been conducted such as
by Caiza and del Alamo Ramiro (2013), Edwards,
Kandru and Rajagopal (2017), Ihantola et al. (2010);
Lajis et al. (2018), Liang, Liu, Xu, and Wang (2009),
Romli, Abdurahim, Mahmod and Omar (2016),
Romli et al. (2010), Souza et al. (2016), and Striewe
and Goedicke (2014). Ihantola et al. (2010) in their
review covered developed APA tools in certain
period from 2006 to 2010.
Another review study focuses on dynamic-structural
testing (or white-box testing) conducted by Romli et
al. (2016) reported that most of lecturers typically
rely on the structural code coverage specified in
programming assessment and even have a great
learning to allow those criteria to be taken into
consideration of implementing the APA. Similarly,

Liang et al. (2009) reported that dynamic testing and
static analysis as the major approaches of APA. Lajis
et al. (2018) conducted a review that revealed most
of APAS do not have a common grading model that
refers to the learning taxonomy. Similarly, Caiza and
del Alamo Ramiro (2013) also performed a review
on the art of the APAS, which shows the lack of a
common grading model as the major issue. Caiza
and del Alamo Ramiro (2013) referred to those
APAS that provide timely and consistent feedback
on students’ code scripts and among the related
studies within the year of 2010, the main metric for
grading is correctness. Edwards et al. (2017) in their
study focused on investigating nearly 10 million
static analysis errors found in over 500 thousand
program submission made by students over five
semesters. They used in their investigating two
open-source static analysis tools (PMD and
Checkstyle) to compare their features. They found
that the most common static analyses errors are on
formatting and documentation (Javadoc
commenting) errors are the most common static
analysis errors.
Ihantola et al. (2010) presented a Systematic
Literature Review (SLR) to review the key features
of related APA studies published between 2006 and
2010. They concluded that many proprietary APAS
were developed and provide suggestions on APAS
developers to make their systems open source such
that it is easier for others to contribute enhancement
on the tools because the lack of open source systems
may be one of the reasons for the continuous
development of newly refined APAS. Similarly,
Souza et al. (2016), also performed a SLR to find out
among APA tools that were developed for over last
10 years. They investigated 30 APA tools
particularly to focus on their features in assisting
lecturers to identify APA tools better for their needs.
The selected tools have been found that they can
provide immediate feedback which encourage
students to improve their solutions continuously.
Striewe and Goedicke (2014) reviewed APA tools
that only focus on static analysis approaches in detail
for diagnosing students’ programs. They found that
some of APA tools may be considered insufficient to
use the full power of static analysis in terms of
generating feedback in e-assessment systems. On top
of that, Romli et al. (2010) reviewed the approaches
implemented in several studies that focus on APA,
test data generation and their integrations.
There are in a total of two review studies have been
found for automatic feedback generation for
programming exercises by using APAS conducted
by Keuning et al. (2016) and Keuning et al. (2018).
Keuning et al. (2016) reviewed 69 tools while
Keuning et al. (2018) reviewed 101 tools that
classified the kinds of feedback generation into five

Knowledge Management International Conference (KMICe) 2021, 1 February 2021
http://www.kmice.cms.net.my/

305

categories: Knowledge about Task Constraints
(KTC), Knowledge about Concepts (KC),
Knowledge about Mistakes (KM), Knowledge about
How to proceed (KH), Knowledge about Meta-
Cognition (KMC). These review studies mainly
focused on formative feedback that is defined as
“information communicated to the students with the
intention to modify their thinking or behavior for the
purpose of improving learning” (Shute, 2008).
Keuning et al. (2018), Keuning et al. (2016) in their
studies analyzed the selected APA tools for their
review to find what kind of feedback that each APA
tool support based on the five kinds of feedback that
mentioned above. Keuning et al. (2018) referred that
every APA tool of all selected APA tool in their
study can provide more than one kind of feedback
but they reported that, in general, the feedback that
APAS generate is not very varied and focuses mainly
on identifying errors. Keuning et al. (2016)
concluded that most of the APA tools rely on test
cases and the provided feedbacks were merely on
how to correct errors rather than comprehensively
providing meaningful and rich feedback that could
help them in identifying on their mistakes for further
improvement on the quality of their programming
solutions. Keuning et al. (2018) found that solution
errors based on the KM, are in the most of selected
APA tools with 59.4% while Keuning et al.(2016) in
their previous review found test failures in many of
APA tools.

III METHODOLOGY
A Systematic Mapping Studies (SMS) technique
(Petersen, Feldt, Mujtaba, & Mattsson, 2008) has
been adopted to conduct the proposed review study.
The following summarizes the process of SMS that
consists of five steps:

i) Definition of Research Question
Specifying the research question (s) is the most
important part of any systematic review including
SMS. The following are the research questions that
have been identified:
RQ1: To what extend does the criteria and matrices

used to support automated feedback
generation are implemented in APA?

RQ2: What are among the promising criteria and
matrices that can be utilized in realizing
automated feedback generation to support a
better feature of APA?

ii) Conduct Search
Conduct search is a step to select the related studies
(Petersen et al., 2008). It includes two steps: (1)
using search string to retrieve information from
electronic resources, and (2) databases selections.
Figure 1 shows the keywords and search strings that

were formed in searching the related studies from
electronic databases.

Figure 1. Search String
After designing the search string, the relevant
databases have been chosen. Seven electronic
databases were selected include ACM Digital
Library, Google Scholar, IEEE Xplore, Scopus,
Search Gate, EThOS e-thesis online services and
ScienceDirect which are known as the most relevant
to scientific sources which primary studies likely to
be contained (Souza, Papadakis, Durelli, &
Delamaro, 2014) and some of the selected databases
are among the main databases in state of Computer
Science.
iii) Screening of the papers
This stage is about screening the primary studies
selected to the topic of this study such that the studies
that are not related to answer the RQs can be
excluded (Petersen et al., 2008). The inclusion and
exclusion criteria applied in this study are depicted
in Table 1.

Table 1. Inclusion and Exclusion Criteria
Inclusion
Criteria

Exclusion Criteria

• Abstracts and
keywords are
written in
English

• APAs studies
• Semi-APAs

studies
• Studies that

explain
software
testing
techniques

• Papers that directly related to
programming assignment

• Studies that did not focus on
programming assessment

• Papers where the main language
is not English

• Duplicated papers
• Studies that do not include

related tool for fully or semi-
APA

• Studies that do not indicate
issues related to programming
assessment.

• Papers that are not in the fields
of programming education

• Secondary studies (e.g. review
studies)

iv) Keywording using Abstracts
Keywording was performed in two steps firstly, the
abstract was read with its keywords and then,
concepts that reflected the contribution of the paper
were identified.

v) Data Extraction
Data Extraction is the final stage of SMS process.
The data extraction procedure was conducted in one
stage. The stage was to collect the information about

Knowledge Management International Conference (KMICe) 2021, 1 February 2021
http://www.kmice.cms.net.my/

306

the paper to address the RQs of this mapping study
by presenting them in tabulation. This involved
grouping out the data based on the combinations of
the dimensions and categories and displaying them
using bubble plot. In this stage, nine categories or
dimension were classified by using a classification
scheme for the selected studies. The classification
scheme is as shown in Table 2.

Table 2. Classification Scheme of Selected Study
Categories Description

Study identifier Study Id (e.g. S001)
Author (s) and year
(ref)

Name of author(s) of the selected
studies

Software Qualities
Metrics (static
analysis)

Static analysis metrices applied to
access students’ programming
solutions

Software Qualities
Metrics (dynamic
testing)

Dynamic testing metrices applied to
access students’ programming
solutions

Programming
Languages
used/supported

The programming languages
used/supported by the developed
APAS. For example: Java, Python,
C, C++ and etc.

Technique (s) of
testing applied

Type (s) of the testing applied in the
assessment, could be the static
analysis or dynamic testing or both
of them.

Type of the tool Type of the tool developed could be
stand alone or web-based or mobile-
based

Feedback details The detailed descriptions of
feedback provided via the performed
assessment

Feedback types Type of feedback provided either
formative or summative feedback

IV INITIAL ANALYSIS OF MAPPING
STUDY

This section presents the initial analysis obtained
from the conducted mapping study.

A. Search and Selection Results
Initially 281 papers were retrieved when the
designed search protocol was applied to the selected
scientific databases. Inclusion and exclusion criteria
were then applied based on the titles of the retrieved
papers. By examining all of the papers based on
relevancy of their titles, 158 papers were selected.
The reason they ,to papers was due 123excluding of
were not truly related to the programming
assessment. For example, some of the excluded
papers were discussed on learning programming but

ed on assessing students’ codes. After the not focus
selection of 158 papers, the duplicated papers were
removed as the second criteria of inclusion and
exclusion. This round resulted in selection of 112
papers. After that, 87 papers were selected based on

were tracts. Some of the excluded papers abstheir
written in English and some of them were not not

were sthe 87 paperof related to the desired topic. All
next selection round for in depth the then passed to

reading completely their which involved ,analysis
as s. Finally, 71 papers were selectedcontent

primary studies. From the 87 papers, one paper was
dropped out because it focused on learning
programming rather than programming assessment.

he remaining papers were excluded because they T
 papers.were categorized as review

B. Publication Year
After the process of searching and selecting the final
primary studies by applying inclusion and exclusion
criteria, it has been found that all of the selected
articles were published from 1982 until 2019. Thus,
although APA is a research area that has a long
history, it still attracts the researchers’ focus and
attention until recently. Result on the trends of the
publication year distribution of the selected primary
studies includes: 1 paper (1.4%) was published in
1982, 1 paper (1.4%) was published in 1993, 1 paper
(1.4%) was published in 1995 in (1.4%), 1 paper was
published in 1997, 1 paper (1.4%) was published in
1999, 1 paper (1.4%) was published in 2000, 2
papers (2.8%) were published in 2003, 2 papers
(2.8%) were published in 2004, 3 papers (4.22%)
were published in 2005, 1 paper (1.4%) was
published in 2006, 3 papers (4.22 %) were published
in 2007, 5 papers (7%) were published in 2008, 1
paper (1.4 %) was published in 2010, 2 papers
(2.8%) were published in 2011, 3 papers (4.22%)
were published in 2012, 4 papers (5.63 %) were pub-
lished in 2013, 4 papers (5.63 %) were published in
2014, 7 papers (9.85 %) were published in 2015, 11
papers (15.49 %) were published in 2016, 3 papers
(4.22 %) were published in 2017, 3 papers (14 %)
were published in 2018, 4 papers (5.63 %) were
published in 2019. It can be concluded that the
publications on fully APAS and Semi-APAS are
keep on increasing through the years.

C. Venue Name and Type
A total of 71 venue names collected from searching
the related primary studies, which come from a wide
variety of journal, conference, symposium, peer-
reviewed journal, colloquium and EThOS
(Electronic Theses Online Service). Figure 2 shows
the venue types included in the conducted SMS.
Most of the studies were published in conferences
representing 44 studies (62%) and journals
representing 20 studies (28%). The rest studies were
published in peer-reviewed journals as 3 studies
(4%), 1 study in a symposium (1.4 %), 1 study in a
colloquium (1.4%), and 1 study in EThOS as labeled
‘Thesis’ (1.4 %) and 1 other study (1.4 %). As a
conclusion, majority of the articles are categorized
as conference articles and journals.

Knowledge Management International Conference (KMICe) 2021, 1 February 2021
http://www.kmice.cms.net.my/

307

D. Classification of Relevant Papers
Table 3 shows the distribution of the assessment

tools by types (either APAS or Semi-APAS), their
features (based on stand-alone, web-based, web-
mobile-based), software testing techniques (static
analysis or dynamic testing), dynamic testing
techniques (black-box testing or white-box testing or
a combination both of them), the feedback types
(formative or summative feedback or an integration
between both of them).

Figure 2. Venue Type

V CONCLUSION
Overall, results from conducted SMS revealed that
applying the static analysis and dynamic testing
techniques are the researchers’ focus and interest.
Nevertheless, it is also found that most of the

selected primary studies integrate both dynamic
testing and static analysis techniques in their
proposed APA. Another finding is the black-box
testing was used and focused in the most of selected
studies rather than white box testing. Furthermore, it
is observed that the studies which have supported
formative feedback are close to those studies which
supported the summative feedback. It has been
observed that many of fully APAS and Semi-APAS
studies supported both the summative and formative
feedback. Semi-APAS studies focused on providing
formative feedback more than fully APAS due to the
need of the lecturers in providing useful feedback for
students to get better understanding on their
programming solutions. Additionally, Semi-APAS
are close to fully APAS in providing summative
feedback.
 Currently, Semi-APAS in terms of generating
feedback depend on the human instead of being fully
automatic due to some reasons. However, some
criteria used in current Semi-APAS can be used later
for achieving fully APAS. In this regard, Insa and
Silva (2015) referred to this issue which the fully
APAS are lacking in terms of generating feedback,
since most of the concern was more on fixing some
errors to run the code. As to overcome the lacking in
utilizing human involvement, it is more promising to
integrate automated feedback generation in APAS as
a mandatory rather than an optional for a better
consistent feedback provided to students. This add-
on feature in APAS is more significant in evading
biasness and inconsistency feedbacks.

Table 3. Summary of the Classification Scheme

Notes: SAPAS stands for Semi-APA; FT stands for Feedback Types; FF Stands for Formative feedback; SF Stands for Summative
Feedback; B stands for Both (formative and summative).

REFERENCES

Bey, A., Jermann, P., & Dillenbourg, P. (2018). A comparison between
two automatic assessment approaches for programming: An
empirical study on MOOCs. Educational Technology and
Society, 21(2), 259–272.

Blau, H. (2015). Automated style feedback for advanced beginner Java
programmers (UNIVERSITY OF MASSACHUSETTS
AMHERST Directed; Vol. 2016-Novem).
https://doi.org/10.1109/FIE.2016.7757728

Blau, H., Kolovson, S., Adrion, W. R., & Moll, R. (2016). Automated
style feedback for advanced beginner Java programmers.
Proceedings - Frontiers in Education Conference, FIE, 2016-
Novem. https://doi.org/10.1109/FIE.2016.7757728

Buyrukoglu, S. (2018). Semi-automated assessment of programming
languages for novice programmers.

Buyrukoglu, S., Batmaz, F., & Lock, R. (2016a). Increasing the
Similarity of Programming Code Structures to Accelerate the
Marking Process in a New Semi-Automated Assessment
Approach. In 2016 11th International Conference on Computer
Science & Education (ICCSE), 371–376.

Buyrukoglu, S., Batmaz, F., & Lock, R. (2016b). Semi-automatic
assessment approach to programming code for novice students.
Proceedings of CSEDU 2016, the International Conference on
Computer Supported Education, 1, 289–297.

Buyrukoglu, S., Batmaz, F., & Lock, R. (2017). A new marking
technique in semi-Automated assessment. ICCSE 2017 - 12th
International Conference on Computer Science and Education,
(Iccse), 545–550. https://doi.org/10.1109/ICCSE.2017.8085551.

Caiza, J. C., & del Alamo Ramiro, J. M. (2013). Programming
Assignments Automatic Grading: Review of Tools and
Implementations. 7th International Technology, Education and

Studies APAS SAPAS Stand-alone Web-based Web-Mobile-
based

Static
Analysis

Dynamic
Testing

FT

BB WB Both FF SF B
APA SAPAS APA SAPAS APA SAPAS

71 34 37 18 17 15 20 1 NA 7 27 8 27 28 27 16

28%

62%

4%
1.4%1.4% 1.4%

1.4%

Journal Conference
Peer-reviewed journal Symposium
Colloquium Thesis
others

Knowledge Management International Conference (KMICe) 2021, 1 February 2021
http://www.kmice.cms.net.my/

308

Development Conference, 5691–5700. Retrieved from
http://library.iated.org/view/CAIZA2013PRO

Conole, G. and Warburton, B. (2005) “A review of computer-assisted
assessment,” ALT-J, vol. 13, no. 1, pp. 17–31.

Edwards, S. H., Kandru, N., & Rajagopal, M. B. M. (2017). Investigating
static analysis errors in student Java programs. In Proceedings of
the 2017 ACM Conference on International Computing
Education Research, 65–73.
https://doi.org/10.1145/3105726.3106182

Huang, C., & Morreale, P. A. (2015). An Integrated Automatic
Compiling System for Student Feedback on Java Programs. 201–
204.

Ihantola, P., Ahoniemi, T., Ville, K., & Seppälä, O. (2010). Review of
Recent Systems for Automatic Assessment of Programming
Assignments. In Proceedings of the 10th Koli Calling
International Conference on Computing Education Research,
(January). https://doi.org/10.1145/1930464.1930480

Insa, D., & Silva, J. (2015). Semi-automatic assessment of unrestrained
Java code: a library, a DSL, and a workbench to assess exams
and exercises. In Proceedings of the 2015 ACM Conference on
Innovation and Technology in Computer Science Education, 39–
44.

Insa, D., & Silva, J. (2018). Automatic assessment of Java code.
Computer Languages, Systems and Structures, 53, 59–72.
https://doi.org/10.1016/j.cl.2018.01.004

Jackson, D. (1996). A software system for grading student computer
programs. Computers and Education, 27(3–4), 171–180.
https://doi.org/10.1016/s0360-1315(96)00025-5

Rahman, K. A., Ahmad, S., & Nordin, M. J. (2007). The Design of an
Automated C Programming Assessment Using Pseudocode
Comparison Technique. National Conference on Software
Engineering and Computer Systems 2007.

Koprinska, I., Stretton, J., & Yacef, K. (2015). Students at Risk :
Detection and Remediation. Proceeding of the 8th International
Conference on Educational Data Mining, 512–515.

Keuning, H., Jeuring, J., & Heeren, B. (2016). Towards a Systematic
Review of Automated Feedback Generation for Programming
Exercises. ACM Transactions on Computing Education, 19(1),
1–43. https://doi.org/10.1145/3231711

Keuning, H., Jeuring, J., & Heeren, B. (2018). A systematic literature
review of automated feedback generation for programming
exercises. ACM Transactions on Computing Education, 19(1).
https://doi.org/10.1145/3231711

Lajis, A., Baharudin, S. A., Kadir, D. A., Ralim, N. M., Nasir, H. M., &
Aziz, N. A. (2018). A review of techniques in automatic
programming assessment for practical skill test. Journal of
Telecommunication, Electronic and Computer Engineering
(JTEC), 10(2–5), 109–113.

Latiu, G. I., Cret, O. A., & Vacariu, L. (2012). Automatic Test Data
Generation for Software Path Testing Using Evolutionary
Algorithms. 2012 Third International Conference on Emerging
Intelligent Data and Web Technologies, 1–8.
https://doi.org/10.1109/EIDWT.2012.25

Liang, Y., Liu, Q., Xu, J., & Wang, D. (2009). The recent development
of automated programming assessment. In 2009 International
Conference on Computational Intelligence and Software
Engineering. IEEE, 1–5.
https://doi.org/10.1109/CISE.2009.5365307

Myers, G. J., Sendler, C. and Bandgett, T. (2011) The Art of Software
Testing, 3rd ed. John Wiley & Sons.

Novikov, A. S., Ivutin, A. N., Troshina, A. G. and Vasiliev, S. N. (2017).
“The approach to finding errors in program code based on static
analysis methodology,” 2017 6th Mediterr. Conf. Embed.
Comput. MECO 2017 - Incl. ECYPS 2017, Proc., pp. 4–77.

Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M. (2008). Systematic
Mapping Studies in Software Engineering. In Ease, 8(1), 68–77.
https://doi.org/10.1142/S0218194007003112

Renumol, V., Jayaprakash, S., & Janakiram, D. (2009). Classification of
cognitive difficulties of students to learn computer programming.
Indian Institute of Technology, India, 12.

Romli, R., Abdurahim, E. A., Mahmod, M., & Omar, M. (2016). Current
practices of dynamic-structural testing in programming
assessments. Journal of Telecommunication, Electronic and
Computer Engineering, 8(2), 153–159.

Romli, R., Sulaiman, S., & Zamli, K. Z. (2010). Automatic programming
assessment and test data generation a review on its approaches.
ITSim ’10, 1186–1192.
https://doi.org/10.1109/ITSIM.2010.5561488

Romli, R., Sulaiman, S., & Zamli, K. Z. (2013). Designing a test set for
structural testing in automatic programming assessment.
International Journal of Advances in Soft Computing and Its
Applications, 5(SPECIALISSUE.3), 41–64.

Romli, R., Sulaiman, S., & Zamli, K. Z. (2015). Improving Automated
Programming Assessments: User Experience Evaluation Using
FaSt-generator. Procedia Computer Science, 72, 186–193.
https://doi.org/10.1016/j.procs.2015.12.120

Saikkonen, R., Malmi, L., & Korhonen, A. (2001). Fully Automatic
Assessment of Programming Exercises. ACM SIGCSE Bulletin,
33(3), 133–136. https://doi.org/10.1145/507758.377666

Salman, A. (1999). Automatic marking of Shell programs for students
coursework assessment (Doctoral dissertation), Oxford Brookes
University.

Scriven, M. S. (1967). The methodology of evaluation. Chicago: Rand
McNally.

Sharma, K. K., Banerjee, K., Vikas, I. and Mandal, C. (2014).
“Automated Checking of the Violation of Precedence of
Conditions in else-if Constructs in Students’ Programs,” 2014
IEEE Int. Conf. MOOC, Innov. Technol. Educ., pp. 201–204.

Shute, V. J. (2008). Focus on formative feedback. Review of Educational
Research, 78(1), 153–189.
https://doi.org/10.3102/0034654307313795

Souza, Draylson M. de, Oliveira, B. H., Maldonado, J. C., Souza, S. R.
S., & Barbosa, E. F. (2014). Towards the use of an automatic
assessment system in the teaching of software testing. In 2014
IEEE Frontiers in Education Conference (FIE) Proceedings, 1-8.
IEEE.

Souza, Draylson Micael de, Isotani, S., & Barbosa, E. F. (2015).
Teaching novice programmers using ProgTest. International
Journal of Knowledge and Learning (IJKL), 10(1), 60–77.
https://doi.org/10.1504/IJKL.2015.071054

Souza, Draylson M., Felizardo, K. R., & Barbosa, E. F. (2016). A
systematic literature review of assessment tools for programming
assignments. Proceedings - 2016 IEEE 29th Conference on
Software Engineering Education and Training, CSEEandT 2016,
147–156. https://doi.org/10.1109/CSEET.2016.48

Souza, F. C. M., Papadakis, M., Durelli, V., & Delamaro, M. E. (2014).
Test Data Generation Techniques for Mutation Testing: A
Systematic Mapping. Conference on Software Engineering, (17),
419–432. https://doi.org/10.13140/RG.2.1.3699.9209

Striewe, M., & Goedicke, M. (2014). A Review of Static Analysis
Approaches for Programming Exercises. In International
Computer Assisted Assessment Conference. Springer, Cham.,
100–113.

Taras, M. (2005). Assessment–summative and formative–some
theoretical reflections. British Journal of Educational Studies,
53(4), 466–478.

Zougari, S., Tanana, M., & Lyhyaoui, A. (2016a). Hybrid assessment
method for programming assignments. In 2016 4th IEEE
International Colloquium on Information Science and
Technology (CiSt)., 564-569.IEEE.
https://doi.org/10.1109/CIST.2016.7805112

	I Introduction
	II RELATED WORK
	A. Software Testing and Programming Assessment
	B. Types of Assessment
	C. Review Studies on Automatic Programming Assessment and Automated Feedback Generation

	III METHODOLOGY
	IV INITIAL analysis OF Mapping Study
	A. Search and Selection Results
	B. Publication Year
	C. Venue Name and Type
	D. Classification of Relevant Papers

	V Conclusion
	References

