

Knowledge Management International Conference (KMICe) 2021, 1 February 2021
http://www.kmice.cms.net.my/

130

A Comparison Study of Software Testing Activities in Agile Methods

Samera Obaid Barraood1,2, Haslina Mohd.1 and Fauziah Baharom1
1Universiti Utara Malaysia, Malaysia, {samera_obaid@ahsgs.uum.edu.my, haslina@uum.edu.my, fauziah@uum.edu.my}

2Hadhramout University, Hadhramout, Yemen, {sammorahobaid@gmail.com}

ABSTRACT
Nowadays the majority of companies in the world
are adopting Agile methodology for developing their
software products due to the methodology promises
to deliver product faster with good quality. The most
significant method for checking the quality of a
product is software testing. However, in Agile
development, software testing is very complex and
still has challenges. This is largely happened because
the Agile development does not concentrate much on
software testing activities. It focuses on customer
involvement, short iterations, and regular deliveries.
This study is a comprehensive review of the current
practices of software testing in the Agile methods.
The comparison is made based on some criteria such
as change during iteration, acceptance criteria, and
quality assurance activities. The aim is to identify the
similarities and differences between these methods
especially in creating test cases. The study focuses
on three common Agile methods which are XP,
Scrum and Kanban. The review shows no difference
in the techniques for designing test cases between
these three methods. This result can contribute to
help the developers and testers who adopt Agile
methodology to follow the same rule of creating test
cases based on the suitable technique in different
Agile methods.

Keywords: Agile methods, Scrum, Extreme
programming, Kanban, Agile testing, test cases.

I INTRODUCTION
Trends for testing software development
methodologies demonstrate that the practices of
agility are adapted to the workplace context as
organizations that adopts more practices of the agile-
like software development (Atawneh, 2019).
Software testing ensures that what you get in the end
is what you wanted to build as stated in the system
requirements. Also, it able to identify faults and
errors in the system which can increase the quality of
the software and it checks out if there is an error in
the system which can make software unusable
(Sawant et al., 2012). The Agile methods makes the
testing becomes an essential component of other parts
of the development phases and ensures the
continuous product quality (Gil et al., 2016). The
agile methods have some similar and difference

features, where many studies make a comparison
between these methods to show the similar and
different aspects, such as Al-Zewairi et al. (2017),
Anwer, et al. (2017), Black (2017), Kumar et al.
(2019), Merzouk et al. (2017), and Saleh et al. (2019).
Agile methods insist in sharing common values and
principles, short iterations, continuous
communication among Agile team members, and
frequent fast delivery of system under test (Brhel et
al., 2015; Tahir, 2019). However, some of these
methods are different in some points such as period
of iteration, acceptance of changing during iteration,
and number of team members. Nevertheless, the
previous studies did not show whether there is a
difference in testing activities especially creating test
cases among Agile methods. Therefore, there is a
need to check whether they are different in the
process of designing test cases or not. In order to help
testers to be aware about creating test cases in each
Agile method. Thus, this study aims to investigate
whether there are any differences in designing test
cases among the Agile methods, but this study uses
the most Agile methods XP, Scrum, and Kanban
(Black, 2017; Srivastava, 2017) adopt in the business
environment (Anwer et al., 2017; Saleh et al., 2019)
to achieve this comparison.
The next sections of this paper explain comparison
between the Agile approaches extreme programming,
Scrum, and Kanban, followed by testing in Agile and
ending with the conclusion of this study.
II AGILE SOFTWARE DEVELOPMENT

METHODS
Agile methodology is a collection of values,
principles, and practices that incorporates iterative
development, test, and feedback into a new style of
application development (Agile 101, 2019; Lewis,
2009). Agile Software Development (ASD) methods
are considered lightweight methods that could
employ an incremental and iterative lifecycle
accompanied with short requirements and iterations,
which could be modified within the development
with broad participation by the customer (Atawneh,
2019; Boehm & Turner, 2005; Usman et al., 2014).
Agile methods are increasingly being adopted by
companies worldwide to meet increased software
complexity and evolving user demands (Matharu et
al., 2015). There are many benefits for adopting ASD
methods, such as frequent delivery, customer
satisfaction, transparency, flexibility, improved

Knowledge Management International Conference (KMICe) 2021, 1 February 2021
http://www.kmice.cms.net.my/

131

productivity, better software quality, and
predictability (Matharu et al., 2015).
Agile methodology is implemented by several ways.
The use of suitable way is depended on the type of
project. The most commonly ASD methods used are
XP, Scrum, and Kanban (Black, 2017; Srivastava,
2017).
A. Extreme Programming (XP)
XP has developed from long cycles of development
in traditional methods (Beck, 1999). The XP aims at
delivering useful concepts and ideas pertaining to the
software engineering to “extreme” levels degrees
(Beck, 1999). The XP method is "theorised"
according to the key practices and principles that are
being used (Beck, 1999). XP is described by some
activities, values, principles, and practices. Activities
such as listening (customer needs should be carefully
listening by the developer), designing (class,
responsibilities, and collaboration cards), coding
(pair programmed and must be compliant with the
development company’s coding standards), testing
(unit, system wide integration, and acceptance
testing), planning (iterations and user stories), and
managing (stand-up meetings) (Black, 2017).
The development in XP is guided by five values,
which are communications between the projects team
members, simplicity of activities, feedback from
customer, system, and the team, courage the team
members, and finally, for delivering a good software
product, the respect between the team members is
compulsory. Additional XP guidance are described
as a set of principles: humanity, economics, mutual
benefits, self-similarity, improvement, diversity
(open-minded to suggestions), reflection, a
continuous flow, opportunity (i.e., impediments as
opportunities), redundancy (different approaches for
problem solution), failure are normal (multiple
versions), quality (should not be compromised), baby
steps (short space of time), and accepted
responsibility by team members (Black, 2017).
The team members in XP should follow 13 practices:
1) sit together, 2) skills and competences, 3)
informative workspace, 4) energized work, 5) pair
programming, 6) simple and clear user stories, 7)
weekly cycle, 8) quarterly cycle, 9) slack the small
non-serious stories, 10) ten-minute build, 11)
continuous integration, 12) Test Driven Development
(TDD), and 13) incremental design (increment in XP
is smaller in size than increment in Scrum) (Anwer,
Aftab, Shah, et al., 2017; Black, 2017; Matharu et al.,
2015). XP values and principles influenced on most
of ASD methods to follow it (Abrahamsson et al.,
2017; Black, 2017). The XP lifecycle is described in
Figure 1. Regarding testing, it is considered one of
the major activities to ensure high quality product and

high customer satisfaction (Al-Zewairi et al., 2017).
XP using TDD, which is a type of unit testing in
which test cases are written before coding
development to pass these test cases (Beck, 1999).

Figure 1. XP Lifecycle (Abrahamsson et al., 2017)

Following are the steps of TDD cycle as stated in
(Shrivastava & Jain, 2010):
1) Write a test case for a piece of functionality, 2) Run
all test cases to see the new test to fail, 3) Write
corresponding code that passes these test cases, 4)
Run the test cases to see all pass, 5) Refactor the code
and 6) Run all test cases to see the refactoring did not
change the external behavior.

B. Scrum
Scrum is ASD method aimed to improve team
efficiency and dedicated for managing products
(Black, 2017). Scrum puts forward iterations, roles,
meetings, rules, and artefacts. There is no obligation
to use specific practices, it is optional to team to
decide their way to do things. Three things as a
minimum should be available to implement Scrum; a
wall for placing sticky notes, representing user
stories, tasks and impediments; pens and blank sticky
notes; and a set of cards to estimate the effort of
implementation (Black, 2017). The main roles in
Scrum are Product owner, Scrum master, and Scrum
team (Anwer et al., 2017; Black, 2017). Figure 2
illustrates Scrum framework process.

Figure 2. Scrum Process (Anwer et al., 2017)

Knowledge Management International Conference (KMICe) 2021, 1 February 2021
http://www.kmice.cms.net.my/

132

Product Owner. Product owner is the person who
directs the Scrum team toward “what to do next”,
includes and prioritizes the user stories in the product
backlog, which should be accessible, clear, and
transparent to all other members (Kayes et al., 2016).
He has a responsibility for deciding feature
criticality, quality characteristics and product
validity (Black, 2017).
Scrum Master. The scrum is facilitated by a scrum
master, who also helps to build high-value products
with a development team. Scrum master ensures that
practices and rules are implemented. He helps in
managing and prioritizing the product backlog items.
In addition, scrum master deletes all the
impediments and outside distracting influences that
come along in the process of sprint goals
achievement (Black, 2017; Kayes et al., 2016).
Scrum Team. They are self-organized, cross-
functional, ranged from 3 to 9 members, and they are
responsible of converting the user requirements into
active software through developing the code. Testing
is also a team responsibility. The scrum team
includes different skills members such as, testers,
developers, architects and so forth and other
specialists (e.g., a performance testing specialist)
may join the team when needed and when their tasks
are done, they are leave. The following Table 1
displays certain keywords in Scrum which have
special meaning (Black, 2017).

Table 1. Scrum Keywords
Scrum
Keyword Description

Sprint

Fixed period of time (iteration) which
usually ranged from 2 to 4 weeks as well
as each sprint produces a new version of
the product.

Velocity
A measure of the amount of work in a
sprint a team can do. It can refer to the
number of completed story points.

Product
increment

A releasable product that resulted at the
end of each sprint.

Product
backlog

The source of the sprint content. The
requirements are stored in product
backlog in the form of user stories
(product backlog items (PBIs)) that are not
implemented yet. These user stories are
ordered, where the more important
become the first for implementation.
During sprints, the product backlog not
allowed to change, but the changes can be
allowed during the release planning.

Sprint backlog

A set of high priority items from the
product backlog which selected by the
team during the sprint meeting. The items
of sprint backlog also divided into tasks
for execution.

Definition of
done (DoD)

A product increment become a 'done' state
when an agreed list of activities including
testing is achieved at the end of a sprint.

Time boxing

The time needed for tasks implementation.
Time needed for build user stories,
develop, test, and time for meetings. If
time short, the non-critical user stories
move to the end of product backlog.

Transparency

It means every aspect of the Scrum
process that affect the result should be
visible to all team members involved in
product development. The burndown
chart is one examples of transparency.

Daily Scrum

It is also called daily stand-up meeting. It
is a mechanism for progress reporting.
The team members group up every day for
15-20 minutes, where the status of the
tasks is tracked, and they take the
corrective action for any speed
interruption.

Burndown/bur
nup chart

Both charts are associated with Scrum.
Both charts show how the team is
progressing against its predictions.

Regarding testing, a high-level test planning is
performed before write test cases to set the
environment, budget, place, time and team members.
So before delivering the product, unit, integration,
regression and all non-functional testing are
performed (Harichandan et al., 2014). All types of
testing performed through test quadrant to get high
product quality (Collins et al., 2012).
C. Kanban
The word Kanban comes from Japanese which means
‘signboard’ (Merzouk et al., 2017). It is like Scrum
used for managing the products with an emphasis on
continuous delivery on just-in-time. Kanban process
is designed to assist teams by working together in
efficient way (Black, 2017; Merzouk et al., 2017). In
Kanban, three instruments are used, Kanban board,
work-in-progress limit, and lead time.
Kanban board. On a board, several columns list items
in different states. Each column represents a set of
activities called a station, which represented as
analyze, development, and tests, as illustrated in
Figure 3. This Agile method also used sticky notes
for symbolizing items, steps, and tasks. These sticky
notes move from left to right when all activities of a
station are done and there is a free slot in the next
column. Thus, Kanban board helps in tracking the
activities of testing.
Limit Work-in-progress (WIP). There is a limited
number of tasks that can handle in each station.
Therefore, in a time there is a limited number of user
stories. This number of user stories is decided by the
team with the contribution of testers depending on the
test effort.
Lead time. Kanban is utilized to improve the cycle
time and tasks continuous flow via reduce the
(average) lead time for the complete value stream.
Thus, when complete a task, immediately the ticket

Knowledge Management International Conference (KMICe) 2021, 1 February 2021
http://www.kmice.cms.net.my/

133

is transferred to the next station if there is any a free
slot.
The test cases are designing earlier for development
and the maintenance of it during development
progresses can help in remove defects during the
iteration. Kanban has a concept is Done-Done (Like
Scrum has DoD) which point to that a user story
cannot reach a completion state until complete the
testing.

Figure 3. Kanban Lifecycle

III AGILE TESTING
Software testing is a quality assurance activity. It is
an important part of any project which improve the
quality and productivity of Agile projects (Gil et al.,
2016; Nawaz & Malik, 2008). It is a series of
processes that begin with requirements step in the
early phases of product life cycle (Nawaz & Malik,
2008; Tekin & Cetin, 2012), hence lack of testing
resources leads to poor quality (Chomal & Saini,
2014; Rajkumar & Alagarsamy, 2013). In Agile, a
testing practice follows Agile principles and it
prepared properly so as to cater for continuous
changes of the requirements (Jammalamadaka, 2016;
Yu, 2018b). It does not just mean testing on Agile
projects but testing an application with a plan to learn
about it as well as it is integrated into Agile
development process unlike a traditional testing
which is a phase (Anwer et al., 2017; Harichandan,
Panda, & Acharya, 2014). However, it is similar aims
with traditional testing, but it is different in the team
structure. All team members are involved in Agile
testing but with special contribution from
professional testers (Kayes et al., 2016).
Agile testing process is based on the iterative
methodologies and overcome the disadvantages of
sequential models (Khan et al., 2016). All errors are
corrected in each iteration after constant testing,
obtaining clean code permanently (Gil et al., 2016).
The test cases in Agile must be developed as the
requirements evolve (Lewis, 2009). The continuous
change of requirements and projects long duration

calls for changing as well as increasing the test cases
(Beer & Felderer, 2018; Do, 2016). Testing in Agile
can address these drawbacks that found in traditional
testing, via adaption of frequent change of
requirements and short iterations and releases (Yu,
2018a, 2018b). As well as via continuous feedback
that redirect all the development process (Gil et al.,
2016). The testers utilize essential information and
they discard the irrelevant details (Gil et al., 2016).
As mentioned before, testing activities are achieved
during each iteration. Starting from creating test plan,
prioritizing user stories into product backlog, then
creating acceptance criteria that for the testable user
stories. Following by writing test cases based on the
acceptance criteria, as illustrated in Figure 4. The
created test cases should be easy, understandable, and
reusable for all team members (Gil et al., 2016).

Figure 4. Testing Activities During Iteration Adapted from

(Rajasekhar & Shafi, 2014)

ASD methods needs Agile testing practices for its
implementation. Agile testing has been widely used
in various test practice. The common strategies in
testing practice are Test Driven Development (TDD),
Acceptance Test Driven Development (ATDD), and
Behavior Driven Development (BDD) (Rajasekhar &
Shafi, 2014; Yu, 2018b). TDD is based on writing
test cases followed by coding. Therefore, the actual
tests start before the programming (Black, 2017).
ATDD is depended on the collaboration of business
customers, developers and testers in producing
testable product requirements and to build high
quality software in a more rapid way. The key point
of ATDD is that it is driven by pre-defined
acceptance criteria and acceptance test cases where
each part of the program must pass an acceptance test
before being merged into the master branch
(Atawneh, 2019). Whereas, BDD is depended on the
expected behavior of the software being developed.
The BDD is often considered to be an extension to
TDD and it provides a way to achieve modularity in
the software development process (Atawneh, 2019).
Test cases are designing by one of the testing
techniques black box or white box, where, each one
of has some techniques of designing test cases
(Black, 2017). These techniques are used in
traditional methodologies and in Agile methods as

Knowledge Management International Conference (KMICe) 2021, 1 February 2021
http://www.kmice.cms.net.my/

134

well, but in Agile the documentation way is different
(Black, 2017). In black box, test cases are designed
only from the test item specifications without
looking at the code (IEEE, 2008). In contrast, the
white-box testing shows what happen inside the
system, the tester has an insight about the details of
the structure and source code inside the application
which he uses it to design test cases (Honest, 2019;
Irawan et al., 2018). The design techniques of test
cases in black box like boundary value analysis,
equivalence class partitioning, and decision tables
(Black, 2017). Examples of white box techniques of
designing test cases are control flow, basis path
testing, loop testing, and data flow testing (Nidhra &
Dondeti, 2012). In this paper we give the steps of
designing test cases using equivalence class partition
technique as example of black box testing (Nidhra &
Dondeti, 2012).
1. Define the equivalence classes.
2. Write the initial test case that cover as many as

valid equivalence classes as possible.
3. Continue writing test cases until all of the valid

equivalence classes have been included.
4. Finally, write one test case for each invalid class.
As example of designing test cases in white box
techniques is basic path testing steps (Nidhra &

Dondeti, 2012). 1) The code is using for drawing the
corresponding control flow graphs, 2) determine the
cyclomatic complexity of resultant flow graph, 3)
find the linearly independent paths, 4) prepare the test
cases for each path one test case and for each test case
it should define the input condition and expected
output. These designing techniques are using in all
Agile methods (Black, 2017).
XP, Scrum, and Kanban are commonly used with
some differences and similarities. Since these
methods are belonging to Agile so they have iterative
and incremental nature but with different durations,
continuous planning, clear definition of roles, and a
workflow discipline. XP focus on engineering
aspects of software project whereas Scrum and
Kanban focus on management aspects. Table 2 shows
the comparison between them. Some points of this
comparison is extracted from a number of studies
which include (Al-Zewairi et al., 2017; Anwer,
Aftab, Shah, et al., 2017; Black, 2017; Kumar et al.,
2019; Merzouk et al., 2017; Mohammad Almseidin
et al., 2015; Nawaz & Malik, 2008; Saleh et al., 2019;
Sophocleous & Kapitsaki, 2020). However, these
studies have not highlighted testing activities and
how designing test cases in different Agile methods.

Table 2: Comparison between XP, Scrum, and Kanban

Criteria XP Scrum Kanban
Focus Engineering aspects Management aspects Management aspects
Stages inside
iteration

Analysis, design, planning for
testing, testing

Analysis, design, evolution, testing
delivery Analyse, development, testing

Team size 2 - 20 members 5 – 9 members
with Scrum Master and Product Owner Undefined

Iteration/ Sprint
duration

From 1 to 3 weeks From 2 to 4 weeks No specific period. It is measured
based on the cycle time

Daily meeting Yes Yes Yes
Requirements
plan

The listing of prerequisites is
done always

The requisites require listing based on
the length of the run, each two, three or
a month

The basics are done always every
day/ hour

Change during
iteration

Allowed without constraints Changing not allowed if Sprint begins Allowed without constraints

Acceptance
criteria

Defined from user stories Defined from user stories Defined from user stories

Test cases Designing based on acceptance
criteria

Designing based on acceptance criteria Designing based on acceptance
criteria

Feedback Span from minutes to months Span over a month Undefined
Testing Performed in each iteration Performed in each iteration Performed in each iteration
Quality
assurance
activities

TDD, pair programming,
continuous integration, unit
testing, system testing,
acceptance testing, coding
standards, refactoring,
collective code ownership,
simple design, on-site customer,
face to face communication,
regular daily meeting, focusses
and concentrates on leveraging

Unit testing, continuous integration,
acceptance testing, exploratory testing,
automation testing, regular sprint and
daily meetings, coding and design
standards, test cases are design based on
acceptance criteria

A single user story is handled in
an iteration, each user story is split
into tasks, tasks split into sub-
tasks, test is performed in each
station, testing activities are traced
by helping Kanban board,
continuous flow, upfront test cases
design, test cases are design based
on acceptance criteria

Knowledge Management International Conference (KMICe) 2021, 1 February 2021
http://www.kmice.cms.net.my/

135

the quality of software, slack
the small non-serious stories,
test cases are design based on
acceptance criteria

Testing issues No documentation for user plan,
short iteration (one or two
weeks), unstable requirements,
lack frequent communications,
short period of time

Most quality assurance activities are
skipping due to absence of a dedicated
quality assurance team; acceptance
criteria, user stories, and DoD are not
defined properly, ignoring negative paths
when designing test cases, 50% of test
cases are not written based on
requirements, unit testing is inadequate
and inconsistent, quickly requirements
changes causes increasing number of test
cases and testing speed, high cost and
time of regression testing, lack
communication between tester and
developer, unbalance between the
meetings and documentation, less test
documentation may lead to early Sprint
output.

As other Agile methods issues,
most test cases are not defined
based on requirements, lack
communication between testers
and developers, less
documentation causes difficulty in
designing test cases in high level
requirements

The XP, Scrum, and Kanban have iterative and
incremental nature but with different durations.
These ASD methods with several features and
aspects to support projects that need short or long
period of time to be finished.
It is noticed in Table 2 that testing activities are
integrated with other parts (i.e., analysis, design,
develop) of the ASD methods process (e.g., XP,
Scrum, and Kanban). Testing is a very important part
and implement good practices and follow the whole-
team approach (Gil et al., 2016; Srivastava, 2017). It
is achieved effectively in each iteration of the ASD
process. Testing activities such clarifying
requirements, preparing test data, and writing test
cases in all software development methods have the
similar aims, which is detection, prevention,
demonstration, improving quality, verification, and
validation (Chauhan, 2010; Kaplesh & Pang, 2020;
Kayes et al., 2016; Rajasekhar & Shafi, 2014).
However, in ASD it should take into consideration
the volatility of requirements, the whole team sharing
in testing process, and iterative and incremental life
cycle. The testing activities support several
principles, practices and values of different ASD
methods (i.e., XP, Scrum, Kanban), such as
continuous integration, incremental, acceptance
criteria, and accepting changes during the
development. The increments in these methods
requires test cases to validate its functionality and to
validate the whole system operations. Test cases
which is the main part of testing activities constitute
based on the acceptance criteria, which are extracted
from testable user stories in all these methods (Black,
2017; Kayes et al., 2016). XP, Scrum, and Kanban

methods use the same strategy to write test cases,
which written before coding. Therefore, designing
test cases from user stories is similar in ASD
methods. However, the big issue is that many
companies do not create test cases based on the
requirements (i.e., user stories) (Sophocleous &
Kapitsaki, 2020; Uikey & Suman, 2012) and this
causes several problems of testing quality, other
issues is displayed in Table 2.

IV CONCLUSION
The main result of this comparison between Agile
methods are observed that these methods (XP,
Scrum, and Kanban) are different in some roles and
practices but in testing activities they are similar,
where designing test cases depends on the user
requirements, which described in Agile as user
stories. As well as they are using the same designing
techniques of test cases. The role of software testing
is very imperative in the development process of
Agile projects for ensuring the quality of products.
The nature of Agile that accept requirement changes,
incremental, and iterative emphasize that the testing
should be achieved in each iteration. An additional
research is needed to achieve to support our work on
the test cases in Agile methods to show its importance
for gain high quality software. This study contributed
to show that the testing activities (i.e., designing test
cases) are not different in Agile methods.

REFERENCES
Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2017). Agile

software development methods: Review and analysis. ArXiv
Preprint ArXiv:1709.08439.

Agile 101. (2019). What is Agile Software Development? Agile
Alliance. https://www.agilealliance.org/agile101/

Knowledge Management International Conference (KMICe) 2021, 1 February 2021
http://www.kmice.cms.net.my/

136

Al-Zewairi, M., Biltawi, M., Etaiwi, W., & Shaout, A. (2017). Agile
Software Development Methodologies: Survey of Surveys.
Journal of Computer and Communications, 05(05), 74–97.
https://doi.org/10.4236/jcc.2017.55007

Anwer, F., Aftab, S., Shah, S., & Waheed, U. (2017). Comparative
Analysis of Two Popular Agile Process Models: Extreme
Programming and Scrum. International Journal of Computer
Science and Telecommunications, 8(2), 1–7.

Anwer, F., Aftab, S., Waheed, U., & Shah, S. S. M. (2017). Agile
Software Development Models TDD , FDD , DSDM , and
Crystal Methods : A Survey. International Journal of
Multidisciplinary Science and Engineering, 8(2).

Atawneh, S. (2019). The Analysis of Current State of Agile Software
Development. Journal of Theoretical and Applied Information
Technology, 97(22).

Beck, K. (1999). Embracing change with extreme programming.
Computer, 10, 70–77.

Beer, A., & Felderer, M. (2018). Measuring and Improving Testability
of System Requirements in an Industrial Context by Applying
the Goal Question Metric Approach. 5th International Workshop
on Requirements Engineering and Testing Measuring, 25–32.

Black, R. (2017). Agile Testing Foundations An ISTQB Foundation
Level Agile Tester Guide. BCS Learning & Development Ltd.

Boehm, B., & Turner, R. (2005). Management Challenges to Implement
Agile Processes. Traditional Development Organizations.

Brhel, M., Meth, H., Maedche, A., & Werder, K. (2015). Exploring
principles of user-centered agile software development: A
literature review. Information and Software Technology, 61,
163–181.

Chauhan, N. (2010). Software Testing: Principles and Practices. Oxford
university press.

Chomal, V. S., & Saini, J. R. (2014). Cataloguing most severe causes
that lead software projects to fail. International Journal on Recent
and Innovation Trends in Computing and Communication,
1143–1147.

Collins, E., Dias-Neto, A., & Jr., V. F. de L. (2012). Strategies for Agile
Software Testing Automation : An Industrial Experience.
Computer Software and Applications Conference Workshops
(COMPSACW), 2012 IEEE 36th Annual, 440–445.

Do, H. (2016). Recent Advances in Regression Testing Techniques.
Advances in Computers, 103, 53–77.
https://doi.org/10.1016/bs.adcom.2016.04.004

Gil, C., Diaz, J., Orozco, M., de la Hoz, A., de la Hoz, E., & Morales, R.
(2016). Agile testing practices in software quality: State of the
art review. Journal of Theoretical and Applied Information
Technology, 92(1), 28–36.

Harichandan, Ss., Panda, N., & Acharya, A. A. (2014). Scrum Testing
With Backlog Management in Agile Development Environment.
International Journal of Computer Science and Engineering,
2(3), 187–192. http://www.ijcseonline.org/pub_paper/38-
IJCSE-00144.pdf

Honest, N. (2019). Role of Testing in Software Development Life Cycle
Nirali. International Journal of Computer Sciences and
Engineering, 7(5), 886–889.

IEEE, 829-2008. (2008). IEEE Standard for Software and System Test
Documentation. IEEE Computer Society.

Irawan, Y., Muzid, S., Susanti, N., & Setiawan, R. (2018). System
Testing using Black Box Testing Equivalence Partitioning (Case
Study at Garbage Bank Management Information System on
Karya Sentosa). International Conference on Computer Science
and Engineering Technology.

Jammalamadaka, K. (2016). An Industrial Survey On The Test
Automation Challenges In The Agile Scrum Teams.
International Journal of Research in Engineering and Technology
(IJRET), 05(10), 82–87. http://ijret.esatjournals.org

Kaplesh, P., & Pang, S. K. Y. (2020). Software Testing. In Software
Engineering for Agile Application Development (pp. 189–211).
IGI Global.

Kayes, I., Sarker, M., & Chakareski, J. (2016). Product Backlog Rating :
A Case Study On Measuring Test Quality In Scrum. Innovations
in Systems and Software Engineering, 12(4), 303–317.

Khan, R., Srivastava, A. K., & Pandey, D. (2016). Agile approach for
Software Testing process. 2016 International Conference System
Modeling & Advancement in Research Trends (SMART), 3–6.
https://doi.org/10.1109/SYSMART.2016.7894479

Kumar, R., Maheshwary, P., & Malche, T. (2019). Inside Agile Family:
Software Development Methodologies. International Journal of
Computer and Engineering, 7(6), 650–660.
https://doi.org/10.26438/ijcse/v7i4.184190

Lewis, W. E. (2009). Software Testing and Continuous Quality
Improvement Third Edithion. Taylor & Francis Group, LLC.

Matharu, G. S., Mishra, A., Singh, H., & Upadhyay, P. (2015). Empirical
study of agile software development methodologies: A
comparative analysis. ACM SIGSOFT Software Engineering
Notes, 40(1), 1–6.

Merzouk, S., Elhadi, S., Ennaji, H., Marzak, A., & Sael, N. (2017). A
Comparative Study of Agile Methods: Towards a New Model-
based Method. International Journal of Web Applications, 9(4),
121–128.

Mohammad Almseidin, Khaled Alrfou, Nidal Alnidami, & Ahmed
Tarawneh. (2015). A Comparative Study of Agile Methods: XP
versus SCRUM. International Journal of Computer Science and
Software Engineering (IJCSSE), 4(5), 126–129.
http://ijcsse.org/published/volume4/issue5/p3-V4I5.pdf

Nawaz, A., & Malik, K. M. (2008). Software testing process in agile
development. In Computer Science Master Thesis, Blekinge
Institute of Technology. Citeseer.

Nidhra, S., & Dondeti, J. (2012). Black box and white box testing
techniques-a literature review. International Journal of
Embedded Systems and Applications (IJESA), 2(2), 29–50.

Rajasekhar, P., & Shafi, R. M. (2014). Agile Software Development and
Testing: Approach and Challenges in Advanced Distributed
Systems. Global Journal of Computer Science and Technology,
14(1).

Rajkumar, G., & Alagarsamy, D. K. (2013). The Most Common Factors
For The Failure Of Software Development Project‖. The
International Journal of Computer Science & Applications
(TIJCSA) Volume, 1.

Saleh, S. M., Huq, S. M., & Rahman, M. A. (2019). Comparative Study
within Scrum, Kanban, XP Focused on Their Practices. 2nd
International Conference on Electrical, Computer and
Communication Engineering, ECCE 2019, December.
https://doi.org/10.1109/ECACE.2019.8679334

Sawant, A. A., Bari, P. H., & Chawan, P. . (2012). Software Testing
Techniques and Strategies. Journal of Engineering Research &
Applications, 2(3), 980–986.

Shrivastava, D. P., & Jain, R. C. (2010). Metrics for Test Case Design in
Test Driven Development. International Journal of Computer
Theory and Engineering, 2(6), 952–956.

Sophocleous, R., & Kapitsaki, G. M. (2020). Examining the Current
State of System Testing Methodologies in Quality Assurance.
Stray V., Hoda R., Paasivaara M., Kruchten P. (Eds). Agile
Processes in Software Engineering and Extreme Programming.
XP 2020., 240–249. https://doi.org/https://doi.org/10.1007/978-
3-030-49392-9_16

Srivastava, S. (2017). Agile Development Testing Paradigms.
International Journal Of Advance Research, Ideas And
Innovations In Technology, 3(3), 915–923.

Tahir, M. (2019). Agile Software Development Methods. Technology,
1(1), 10–20.

Tekin, O., & Cetin, G. B. (2012). Application test process in product life
cycle. 2012 6th International Conference on Application of
Information and Communication Technologies (AICT), 1–6.
https://doi.org/10.1109/ICAICT.2012.6398483

Uikey, N., & Suman, U. (2012). An empirical study to design an
effective agile project management framework. Proceedings of
the CUBE International Information Technology Conference,
385–390.

Usman, M., Mendes, E., Weidt, F., & Britto, R. (2014). Postprint Effort
Estimation in Agile Software Development : A Systematic
Literature Review. The 10th International Conference on
Predictive Models in Software Engineering, 82–91.
http://dx.doi.org/10.1145/2639490.2639503 N.B.

Knowledge Management International Conference (KMICe) 2021, 1 February 2021
http://www.kmice.cms.net.my/

137

Yu, J. (2018a). Design and Application of a Testing Framework of
Online Course Based on Agile. IOP Conference Series: Materials
Science and Engineering, 394(3), 32099.

Yu, J. (2018b). Design and Application on Agile Software Exploratory
Testing Model. 2018 2nd IEEE Advanced Information
Management, Communicates, Electronic and Automation
Control Conference (IMCEC), 2082–2088.

	I Introduction
	II aGILE sOFTWARE dEVELOPMENT mETHODS
	A. Extreme Programming (XP)
	B. Scrum
	C. Kanban

	III Agile Testing
	IV Conclusion
	References

