
Knowledge Management International Conference (KMICe) 2021, 1 February 2021
http://www.kmice.cms.net.my/

80

Test Case Quality: Issues and Limitations in Agile Software
Development

Samera Obaid Barraood1,2, Haslina Mohd.1 and Fauziah Baharom1
1Universiti Utara Malaysia, Malaysia, {samera_obaid@ahsgs.uum.edu.my, haslina@uum.edu.my, fauziah@uum.edu.my}

2Hadhramout University, Hadhramout, Yemen, {sammorahobaid@gmail.com}

ABSTRACT
In the Agile software development environment,
continuous changes in user requirements lead to an
increase in the importance of a testing process to
demonstrate a quality product. As test case is a
cornerstone of the testing process, it is important to
emphasize the high-quality construction of the test
cases. Hence, testing process should be adequately
planned and evaluating the quality of test cases can
help to explain some important issues associated
with software testing. However, findings from
literature and the critical analysis of empirical
studies revealed that less academic research has
investigated the test case quality in Agile software
development process. Therefore, with a specific
reference to scrum methodology, the purpose of this
paper is to identify the problems of test case quality
in Agile software development by reviewing the
existing work concerning testing quality in Agile.
This paper has made a useful contribution by
illustrating and clarifying the shortcomings of test
case quality in agile projects and pointing out the
factors that help to improve it.

Keywords: Agile software development, Agile
testing, Scrum, test case quality.

I INTRODUCTION
The nature of test case construction is to obtain the
necessary software coverage under testing (Tran et
al., 2019; Yamaura, 1998). It is important to get good
test cases that have high chance to expose unknown
defects at low cost, ability to increase performance
and robust to meet the users’ requirements (Gómez et
al., 2016; Kamde et al., 2006). This effort will
consequently result in producing quality software
(Adlemo et al., 2018; Tran et al., 2019). Assessing the
quality of test cases is necessarily important in order
understand how much testing is required and where
potential testing attempts should be carried out
(Ahmed et al., 2016). The test case quality (TCQ) is
therefore capable of evaluating the quality of a
software system (Pfaller et al., 2008). A quality test
case is referred to a test case that has a high chance
of revealing defects in a minimum effort, providing
more detailed results, increasing system performance
at a lower cost, and has a high chance of detecting

unknown defects (i.e. the higher the quality of a test
case, the more the potential to detect failures)
(Gómez et al., 2016; Kamde et al., 2006).
The continuous changes in Agile software
development methods requires many efforts to be
performed on testing activities (Beck, 2003; Humble
& Farley, 2010). The efficiency of testing activities
depends largely on the TCQ, which directly defines
the quality of testing (Causevic et al., 2012; Lai,
2017b). Although TCQ appears to be an effective
solution for exposing software defects, in Agile
methodology it still has some issues and problems
that need to be studied and addressed. Therefore, it is
important to identify the shortcomings of TCQ in the
Agile testing process, to understand what the
underlying issues are, and to identify the potential
solutions suggested that require further investigation.
Hence, this paper begins with discussion on the
concepts in TCQ and highlights the importance of
this concepts in assuring software quality. The
second section introduces the Agile software
development process. Section 3 is the overview of
Agile testing, and testing activities in scrum. Section
4 discusses some current and previous identified
issues and limitations of TCQ in Agile software
development and proposed solutions while section 5
concludes the paper.
II AGILE SOFTWARE DEVELOPMENT
Agile software development has become a preferred
method for developing software with an increased
adoption by companies worldwide to meet software
complexity and evolving user demands (Matharu et
al., 2015; Penmetsa, 2017). Agile software
development methodology is a process for workable
software which basically divide an entire project into
manageable small sizes that can be separately
handled for time items change risks and time control
(Rajasekhar & Shafi, 2014). Unlike in the traditional
development paradigm, Agile process do not have
separate coding and testing phases (Gil et al., 2016).
The term mostly used in Agile process is iteration.
There are cross-functional teams that typically work
in all development areas, that is, design, coding and
testing in each iteration (Crispin & Gregory, 2009;
Javed et al., 2019).

Knowledge Management International Conference (KMICe) 2021, 1 February 2021
http://www.kmice.cms.net.my/

81

Several iterations, each one the same length, may be
needed to deliver an entire theme or epic (Crispin &
Gregory, 2009). Customers provide feedbacks to the
system, in the form of stories, for a developed and
tested iteration. The stories of the customers only
stopped when the levels of functionalities required
are delivered (Olausson et al., 2013). A new feature
may require multiple iterations. Every iteration has to
be fully integrated and carefully tested as a final
production release (Penmetsa, 2017). Since the
iterations make the software development effective
and efficient to meet requirements of the customer
and contribute in the success of the project, it also
make the development process a little more
complicated and time-consuming (Javed et al., 2019).
The reason for this complication is that each iteration
in Agile software development contained many
activities (Javed et al., 2019). Short iterations in Agile
software development implies that there must be an
efficient testing process to avoid too much time being
spent in the iteration for test preparation rather than
on the actual tests running (Olausson et al., 2013).
A number of Agile methods has been reported in the
software domain literature which have been adopted
by the software community because of advantages
which include focus on quick software delivery,
changing requirements and customer satisfaction
(Kayes et al., 2016). Notable amongst these methods
are Extreme Programming (XP) (Beck, 1999), Scrum
(Schwaber & Beedle, 2002), Feature Driven
Development (FDD) (Palmer & Felsing, 2001),
Adaptive Software Development (Highsmith, 2013),
Crystal methods (Cockburn, 2004), Agile Unified
Process (Ambler, 2005), and Dynamic Software
Development Method (DSDM) (Stapleton, 1997),
however Scrum is the most commonly adopted
method in Agile software development (Aamir &
Khan, 2017; Kayes et al., 2016). As reported in the
14th State of Agile (StateOfAgile, 2020) that the
most organizations adopt Scrum (58%) and when
calculate this percentage with the hybrid
methodologies that include Scrum, it becomes 85%
of organizations use Scrum. Therefore, it is important
to show the scrum process and activities as example
to show the development process and activities in
Agile software development methods.
Scrum is one of the Agile software development
iterative and incremental methods. It has been
developed for managing the systems development
process. It is an empirical approach applying the
ideas of industrial process control theory to systems
development resulting in an approach that
reintroduces the ideas of flexibility, adaptability and
productivity (Schwaber & Beedle, 2002). It proposes
continuous adaptation of the project planning, using
cycles called sprints, where each sprint is a time-
boxed lasting for between one to four weeks as well

as each sprint produces a new version of the product
with new features (Gil et al., 2016). The unique
features of Scrum according to (2015) are
collaboration, daily meetings, product backlog, sprint
backlog, and roles. The Scrum team should have
skills in designing, developing, testing, and
documenting the product (Anwer et al., 2017). See
Figure. 1 illustrates the scrum process from (Javed et
al., 2019).

Figure 1. Development Process in Scrum.

The process and standards of scrum process are
properly followed by the organizations (Tahir, 2019).
And due to the people are involved in the
development process, who are product owner, scrum
master, developers, and quality assurance engineers
(testers) (Abrahamsson et al., 2017; Kayes et al.,
2016). Sprints are planned by selecting items from a
product backlog, estimating the effort needed to
complete each item selected for the sprint,
competition, product quality, and available resources
(Anwer et al., 2017). During sprints, the team groups
up every day for 15 minutes or less for a daily scrum
meeting, where the status of the tasks is tracked and
they take the corrective action for any speed
interruption (Anwer et al., 2017; Matharu et al.,
2015). In this meeting, team members tell what they
did yesterday, what they would be doing tomorrow
and the blocks and obstacles they would face (Anwer
et al., 2017; Matharu et al., 2015).

III AGILE SOFTWARE TESTING
Brian Marick provides a philosophy of Agile testing
as “a style of testing, one with lessened reliance on
documentation, increased acceptance of change, and
the notion that a project is an ongoing conversation
about quality” (Leffingwell, 2010). Rajasekhar and
Shafi highlighted the aim of testing in both Agile and
traditional method is same, but the difference is the
team constituent, where the testers in Agile are
required to give quality infusion support through the
entire team (Rajasekhar & Shafi, 2014). The early
feedback from testing is the good thing for testers in
Agile projects as this helps developers to identify the

Knowledge Management International Conference (KMICe) 2021, 1 February 2021
http://www.kmice.cms.net.my/

82

issues at an early development stage (Tripathi &
Goyal, 2014).
In Agile software development, the whole team is
responsible for the quality, every one of the team also
can write test cases not only the testers (Laing &
Greaves, 2016). This helps the team comprehend that
testing is an activity all of them need to be involved
in (Laing & Greaves, 2016). Agile testing has five
differences with traditional testing (Laing & Greaves,
2016), as represented visually in testing manifesto
form in Figure 2.

Figure 2. Testing manifesto

In Agile software development, testing starts at the
project beginning and it is recognized as an integral
part of software development with coding (Khan et
al., 2016). The testing is done in each iteration, after
user stories are prioritized and selected which tasks
start to be achieved, it is immediately tested and
released to the customer and when all tasks are
developed and delivered, all tasks are integrated and
tested (Rajasekaran & Dinakaran, 2015). Software
testing is vital part of any project which can be
designated as a component of quality assurance.
Testing process has more value for demonstrating
quality product in Agile environment (Harichandan
et al., 2014).
Compliance to checklist and requirement documents
is not a strict obligation in Agile testing. The goal is
simply to comply with basic necessities for
completing the requests of the customer (Penmetsa,
2017). The continuous changes of requirements of
customer increase the importance of software
development and testing practices in Agile software
development methods (Penmetsa, 2017). Agile
testing enables the organization to be nimble about
uncertain priorities and requirements (Penmetsa,
2017). The need for large numbers of tests is
magnified in Agile software development practices,
that require extensive testing to be performed (Beck,
2003; Gay et al., 2016). Hence, the lack of testing
resources leads to poor quality (Chomal & Saini,
2014; Rajkumar & Alagarsamy, 2013).
The testing tasks in Agile methods should be
prepared properly to cater for continuous changes in
the requirements (Yu, 2018). In order to nimbly test
a software system during Agile software
development, it is crucial to identify what to test (e.g.,
requirements) and how to test it (i.e., test cases)

(Olausson et al., 2013). The requirements are
normally discussed by the developers and testers in
order to identify the acceptance criteria test cases that
need to be designed (Penmetsa, 2017). The
requirements in Agile are described as user stories,
which is formulated as one or two sentences in the
everyday language of the user (Crispin & Gregory,
2009; Lai, 2017a). Each story is written on a small 3
by 5 inches paper note card to guarantee that it is not
too lengthy (Crispin & Gregory, 2009). A well
written user story will describe what the desired
functionality is, who use it for, and why it is useful
(Lai, 2017a). Correct, complete and consistent user
story contents can help generate good test cases (Lai,
2017a).
Agile testers are responsible to plan and estimate user
stories in a product backlog and specifying
acceptance criteria to create test cases for each user
story before they can be considered for inclusion in
an iteration (Black, 2017; Kayes et al., 2016).
Therefore, at the start of all testing processes, it is
significant to document and execute test cases. The
corresponding relationship of test cases and user
stories should be one-to-many, which implies that, a
single user story may be attributed to multiple test
cases. The complexity of the user story may therefore
increase the number of test cases (Aamir & Khan,
2017). Olausson et al. (2013) provides an example of
user story, related acceptance criteria and test cases,
as illustrated in Figure 3.

Figure 3. A user story, acceptance criteria and test cases

In Agile software development, test case quality is
concept highly regarded as an important testing
activity where it is one of the quality features that
directly define the quality of testing that can lead to
quality software and rapid delivery (Causevic,
Punnekkat, et al., 2012; Lai, 2017b). The test cases in
Agile must be developed as the requirements evolve

Knowledge Management International Conference (KMICe) 2021, 1 February 2021
http://www.kmice.cms.net.my/

83

(Lewis, 2009). The continuous change of
requirements and projects long duration calls for
changing as well as increasing the test cases (Beer &
Felderer, 2018). As a part of the Agile process, the
incremental and iterative development process of test
assets have to be properly handled (Olausson et al.,
2013).
Initially, any new feature is not known very well for
the Agile team, so typically it needs to run test cases
on all defined acceptance criteria. When the feature
has been completed, it should be tested according to
the created test cases and that it works as expected.
After that, there is a need only to run tests for
requirement changes validation, which means how to
know the tests to run are necessary for the team.
Speeding up the process of testing to keep up with the
short iterations is another aspect of the Agile story
worth of note (Olausson et al., 2013). Testing
activities in Agile will be explained in this paper
through Scrum testing activities as follows.
Every cycle (sprint) in scrum affects testing. The
testing starts during initial stage of a sprint (Kayes et
al., 2016). Where, unclear requirements are clarified,
system test cases are written, and test data are
prepared by the tester with the product owner (Kayes
et al., 2016), because the importance of testing in
Scrum, Kayes emphasizes role of a tester in Scrum
process. To show clearly the activities of the testing
in Scrum, the tester role in Scrum will be explained.
The testers focus on ensuring the deliverables quality.
Their role is started from the beginning of sprint to
reduce the cost of the requirement and design errors
(Kayes et al., 2016). The role of testers is more
toward guarantee of product quality and not only for
writing and run test cases (Kayes et al., 2016). Testers
are more integrated to the development team

(Harichandan et al., 2014). Itkonen et al. (2005) say
that Agile software development can be benefited
through a team of professional testers. Most quality
assurance and quality control activities are skipped in
Scrum because of the absence of a dedicated quality
assurance team and its short cycles (Aamir & Khan,
2017). This short duration of sprint leads to Scrum
team does not take quality into consideration as well
as a developer cannot write a bug-free code when
working under pressure (i.e., short duration of a
sprint) (Aamir & Khan, 2017).
The activities of Scrum testing are illustrated in
Figure 4. In the initial sprint phase, the tester writes
test cases, prepares test data, clarifies requirements
and coveys updated requirements to development
team and ensures the environment of the test (Kayes
et al., 2016). In the sprint period, he writes checklist
which is a brief version of a test case. The checklist
is written for sprint backlog, which is a set of
prioritized items from product backlog. The checklist
is executed via developers after the sprint backlog
item is developed. The checklist assists to detect bugs
early. The tester also assists the developers to write
unit test cases and ensure the reviews of the code are
done on time (Kayes et al., 2016).
During the sprint halfway, the tester shows to the
product owner a sneak peek of the product, which is
a demonstration of what has been done until that
period. Finally, the developed features are testing
under the tester responsibility based on the test cases
which he writes. The tester deploys the sprint
deliverables to a test server for regression testing
when it became developed. The tester prepares test
plan and run test cases in test server. When regression
testing is completed, the developers perform the
smoke test and the tester verifies the release (Kayes
et al., 2016).

Figure 4. Scrum testing activities

Knowledge Management International Conference (KMICe) 2021, 1 February 2021
http://www.kmice.cms.net.my/

84

IV ISSUES AND LIMITATIONS OF TEST
CASE QUALITY

A test case represents the test instructions for a tester.
It contains a set of conditions or variables under
which a tester will determine whether a system
satisfies the requirements or works properly (Bilal et
al., 2017; Olausson et al., 2013). In Agile
methodology, test cases are written by tester in an
initial Sprint phase. He illustrates and clarifies the
requirements for each user story just some days or
hours before beginning the actual coding (Kayes et
al., 2016).
The good-enough testing of software should have
sufficient assessment of quality at a reasonable cost
(Goeschl et al., 2010), and the good quality of test
cases are very important for assuring the quality of
software (Tran et al., 2019). Unfortunately, writing
good test cases is one of the most difficult and time
consuming testing activities (Serra et al., 2019). In
writing test cases, it is notable for ensuring that
testing could achieve a certain level of thoroughness
(Romli et al., 2020). Missing test target, procedures,
or expected result lead to reduce the quality of test
cases (Jovanovikj et al., 2018).
The test cases help testers to find out problems in the
requirements or in the design of software system
(Kayes et al., 2016). The requirements in Agile
projects are not sufficiently elaborated (Kārkliņa &
Pirta, 2018). It can be inconsistent, incomplete and
incorrect (Lai, 2015). In addition, both user stories
and acceptance criteria, are not usually defined
properly and Agile team does not emphasize on the
quality standards which makes test cases difficult to
be derived (Fischbach et al., 2020; Padmini et al.,
2018). According to Uikey (2012), the test cases are
never written upfront with the requirements or user
stories. Again, there is a lack in traceability between
test cases and related acceptance criteria (Fischbach
et al., 2020). In addition, unsystematically acceptance
tests cause excessive or incomplete test cases
(Fischbach et al., 2020).
Although works have been identified in previous
studies on Agile testing, however, efforts geared
specifically on TCQ are very meager. Investigation
into the result of the existing Agile TCQ models
reveals a number of gaps that are still required to be
filled, as majority of studies related to TCQ focused
on traditional methods. In addition, there is
misalignment in defining the TCQ among academy,
industry, and practitioners (Tran et al., 2019).
defining TCQ from practitioners’ perspective is still
lacking in empirical studies. Some studies (Adlemo
et al., 2018; Bowes et al., 2017; Jovanovikj et al.,
2018; Kamde et al., 2006; Kochhar et al., 2019; Tran
et al., 2019) focused on the TCQ and most of them
identified the factors based on practitioners’

perspective. Unfortunately, these studies are
conducted on traditional development methods.
Where, the traditional development does not support
requirement changing, not fast delivery, not iterative,
and not incremental. Hence, these models can be
difficult to apply for the current practices in Agile
methods. Rajasekaran (2015) stated that the Agile
team sometimes does regression testing repetitively
without a clue on when to stop a particular sprint and
deliver. Moreover, they reported that Agile methods
(like Scrum) faced many testing issues such as
inconsistent and inadequate unit testing, the huge and
quickly changing in requirements.
On the aspect of continuous changes of requirements,
Agile methodology was adopted by many companies
nowadays (StateOfAgile, 2018). The requirement
changes lead to changes in user stories, which lead to
changes in the testing scope (Padmini et al., 2018).
Changes of user stories lead to changes in test cases,
and this consequently wasting a lot of time and
resources (Beer & Felderer, 2018; Padmini et al.,
2018). To address the issues of Agile testing, a
number of researchers have undertaken many
approaches to increase the quality of Agile testing.
For example, Shrivastava and Jain (2010) proposed
automated test case for unit testing (ATCUT). This
study specifically focused on the testability of test
cases and its effects when applied in TDD as well as
ATCUT design metrics are not sufficient to measure
TCQ which is designed for unit testing, which has
less bug finding effectiveness (25% to 30%) as
compared to System testing (85%). Thus it may cause
some problems related to the software quality
(Rajasekaran & Dinakaran, 2015). Kayes et al.
(2016) also proposed a metric called Product Backlog
Rating (PBR) to measure and monitor the testing
process in Scrum, but this metric need further
evaluation and it is focused on the testing process not
on the TCQ. Aamir and Khan (2017) proposed an
enhanced quality-focused model of scrum via
performing start-of-the-art testing activities in Scrum
in which they account for a test backlog to sustain test
cases and to deliver quality work. However, this
study focused on the quality of product backlog to
enhance the quality of product without referring to
the quality of test cases which are used to catch the
defects.
Fischbach et al. (2020) identified 16 quality factors
for six Agile test artifacts. However, they focused on
the Agile test artefacts in general and they proposed
only one quality factor of unit test cases is code
coverage which is not enough to measure the quality
of test cases. Unudulmaz and Kalıpsız (2020) and
Harichandan et al. (2014) proposed models to
improve the Scrum process but they are not focused
on TCQ. Causevic et al. (2012) conducted an

Knowledge Management International Conference (KMICe) 2021, 1 February 2021
http://www.kmice.cms.net.my/

85

experiment to investigate the TCQ in TDD and
traditional test approach by using three criteria which
are not enough to measure TCQ in Agile software
development as well as they used students as subjects
in their experiment who do not have enough
experience in this field.
In sum, these studies did not clearly address the
issues of the quality of test cases in Agile software
development. On the other hand, the study that
clearly focused on TCQ in Agile is Lai (2017b). Lai
proposed a test case quality measurement (TCQM)
model based on four quality factors of TCQ which
are qualified document, manageable quality,
maintainable quality, and reusable quality. Even
though, TCQM model is able to define the TCQ but
there are some critical factors for the quality test
cases which are still missing. For instance, complete
and precise requirements which are crucial for
writing effective test cases (Ahmad et al., 2019;
Fischbach et al., 2020).
There have been studies focused on the efficiency of
test cases (Adlemo et al., 2018; Kochhar et al., 2019;
Shrivastava & Jain, 2010; Tran et al., 2019),
effectiveness (Adlemo et al., 2018; Kochhar et al.,
2019; Tran et al., 2019), readability (Adlemo et al.,
2018; Bowes et al., 2017; Grano et al., 2018; Kochhar
et al., 2019). Further, test cases should be repeatable
to be high quality (Adlemo et al., 2018; Kamde et al.,
2006). Also test case should be self-contained
(Adlemo et al., 2018; Bowes et al., 2017; Kochhar et
al., 2019), and understandable (Bowes et al., 2017;
Jovanovikj et al., 2018; Kochhar et al., 2019;
Shrivastava & Jain, 2010; Tran et al., 2019).
Other limitations of Lai’s TCQM model such as, it
did not define the factors based on practitioners’
perspective, nevertheless, it is very important to
define the quality of test cases (Tran et al., 2019). In
addition, Lai’s TCQ model adapted Linear
Combination Model (LCM), which does not define
the measurement goal. Defining the measurement
goals are important to clearly guide the practitioners
in organizations to derive metrics for each factors
(Fenton & Bieman, 2015).
In sum, majority studies utilize traditional
development approaches but are unable to tackle the
challenges and limitations of balancing the quality of
software and rapid delivery. A second frequently
encountered problem by prior studies is that there is
no clear description how to measure and access the
quality factors. Therefore, first, it is a need for further
research on effective test cases quality based on very
clear requirements and organizational goals.
Secondly, since Agile software development is
placing more emphasis on organizational goal and
human expertise more research is needed to look into

a wider or organizational artifact, that may strengthen
the future findings.

V CONCLUSION
Software testing is a very important activity in Agile
methods. A great influence on the testing process is
writing and managing of test cases. It is crucial for
Agile teams to understand the drawbacks of test
cases, as this helps to write successful test cases in a
short time. Therefore, this study concentrated on
identifying the issues of test case quality in the Agile
environment.
The test cases quality in Agile methods face some
challenges such as the test cases are not written based
on the requirements, limited requirements coverage,
unclear requirements, less experience of the team
members to write test cases, and missing some
critical quality criteria that improve it such as
requirement quality, tester experience, test case
readability, understandability, specific, performance
efficiency, independence, repeatability, and
accuracy. These issues being clearly identified in this
paper will serve as the basis for developing our test
case quality measurement model that will aid in
assessing quality test cases in Agile projects.

REFERENCES
Aamir, M., & Khan, M. N. A. (2017). Incorporating quality control

activities in scrum in relation to the concept of test backlog.
Sādhanā, 42(7), 1051–1061. https://doi.org/10.1007/s12046-
017-0688-7

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2017). Agile
software development methods: Review and analysis. ArXiv
Preprint ArXiv:1709.08439.

Adlemo, A., Tan, H., & Tarasov, V. (2018). Test case quality as
perceived in Sweden. 5th International Workshop on
Requirements Engineering and Testing (RET’18), 9–12.
https://doi.org/https://doi.org/10.1145/3195538.3195541

Ahmad, A., Leifler, O., & Sandahl, K. (2019). Empirical Analysis of
Factors and their Effect on Test Flakiness-Practitioners’
Perceptions. ArXiv Preprint ArXiv:1906.00673.

Ahmed, I., Gopinath, R., Brindescu, C., Groce, A., & Jensen, C. (2016).
Can testedness be effectively measured? Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 547–558.

Ambler, S. (2005). The agile unified process (aup). Ambysoft,
Http://Www. Agilealliance. Hu/Materials/Books/SWA-AUP. Pdf,
Última Visita, 14.

Anwer, F., Aftab, S., Shah, S., & Waheed, U. (2017). Comparative
Analysis of Two Popular Agile Process Models: Extreme
Programming and Scrum. International Journal of Computer
Science and Telecommunications, 8(2), 1–7.

Beck, K. (1999). Embracing change with extreme programming.
Computer, 10, 70–77.

Beck, K. (2003). Test-driven development: by example. Addison-Wesley
Professional.

Beer, A., & Felderer, M. (2018). Measuring and Improving Testability
of System Requirements in an Industrial Context by Applying
the Goal Question Metric Approach. 5th International Workshop
on Requirements Engineering and Testing Measuring, 25–32.

Bilal, M., Sarwar, N., & Saeed, M. S. (2017). A hybrid test case model
for medium scale web based applications. 2016 6th International
Conference on Innovative Computing Technology, INTECH
2016, 632–637. https://doi.org/10.1109/INTECH.2016.7845115

Black, R. (2017). Agile Testing Foundations An ISTQB Foundation

Knowledge Management International Conference (KMICe) 2021, 1 February 2021
http://www.kmice.cms.net.my/

86

Level Agile Tester Guide. BCS Learning & Development Ltd.
Bowes, D., Hall, T., Petrić, J., Shippey, T., & Turhan, B. (2017). How

Good Are My Tests? In International Workshop on Emerging
Trends in Software Metrics, WETSoM (pp. 9–14). IEEE.
https://doi.org/10.1109/WETSoM.2017.2

Causevic, A., Punnekkat, S., & Sundmark, D. (2012). Quality of Test
Design in Test Driven Development. 2012 Eighth International
Conference on the Quality of Information and Communications
Technology, 224.
http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-18773

Causevic, A., Sundmark, D., & Punnekkat, S. (2012). Test Case Quality
in Test Driven Development : A Study Design and a Pilot
Experiment. The EASE 2012, 223–227.

Chomal, V. S., & Saini, J. R. (2014). Cataloguing most severe causes
that lead software projects to fail. International Journal on
Recent and Innovation Trends in Computing and
Communication, 1143–1147.

Cockburn, A. (2004). Crystal clear: a human-powered methodology for
small teams. Pearson Education.

Crispin, L., & Gregory, J. (2009). Agile testing: a practical guide for
testers and agile teams (1st ed.). Pearson Education, Inc.

Fenton, N., & Bieman, J. (2015). Software Metrics A Rigorous and
Practical Approach Third Edition (Third Edit). Taylor & Francis
Group, LLC.

Fischbach, J., Femmer, H., Mendez, D., Fucci, D., & Vogelsang, A.
(2020). What Makes Agile Test Artifacts Useful? An Activity-
Based Quality Model from a Practitioners’ Perspective. ESEM
’20. http://arxiv.org/abs/2009.01722

Gay, G., Rajan, A., Staats, M., Whalen, M., & Heimdahl, M. P. E.
(2016). The effect of program and model structure on the
effectiveness of mc/dc test adequacy coverage. ACM
Transactions on Software Engineering and Methodology
(TOSEM), 25(3), 1–34.

Gil, C., Diaz, J., Orozco, M., de la Hoz, A., de la Hoz, E., & Morales, R.
(2016). Agile testing practices in software quality: State of the
art review. Journal of Theoretical and Applied Information
Technology, 92(1), 28–36.

Goeschl, S., Herp, M., & Wais, C. (2010). When agile meets OO testing:
a case study. Proceedings of the 1st Workshop on Testing Object-
Oriented Systems, 10.

Gómez, O. S., Monte, B., & Monte, B. (2016). Impact of CS programs
on the quality of test cases generation : An empirical study
Categories and Subject Descriptors. ICSE ’16 Companion. doi:
http://dx.doi.org/10.1145/2889160.2889190

Grano, G., Scalabrino, S., Gall, H. C., & Oliveto, R. (2018). An
empirical investigation on the readability of manual and
generated test cases. Proceedings of the 26th Conference on
Program Comprehension, 348–351.

Harichandan, Ss., Panda, N., & Acharya, A. A. (2014). Scrum Testing
With Backlog Management in Agile Development Environment.
International Journal of Computer Science and Engineering,
2(3), 187–192. http://www.ijcseonline.org/pub_paper/38-
IJCSE-00144.pdf

Highsmith, J. (2013). Adaptive software development: a collaborative
approach to managing complex systems. Addison-Wesley.
http://www.dorsethouse.com/books/asd.html

Humble, J., & Farley, D. (2010). Continuous Delivery: Reliable
Software Releases through Build, Test, and Deployment
Automation (Adobe Reader). Pearson Education.

Hynninen, T., Kasurinen, J., Knutas, A., & Taipale, O. (2018). Software
testing: Survey of the industry practices. 2018 41st International
Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), 1449–1454.
https://doi.org/10.23919/MIPRO.2018.8400261

Itkonen, J., Rautiainen, K., & Lassenius, C. (2005). Towards
understanding quality assurance in agile software development.
ICAM 2005.

Javed, K., Khan, A. H., & Tubbassum, L. (2019). Critical Analysis of
Software Development Methodologies based on Project Risk
Management. INTERNATIONAL JOURNAL OF ACADEMIC
RESEARCH IN BUSINESS AND SOCIAL SCIENCES, 9(12).

Jovanovikj, I., Narasimhan, V., Engels, G., & Sauer, S. (2018). Context-
specific Quality Evaluation of Test Cases. MODELSWARD,
594–601.

Kamde, P. M., Nandavadekar, V. D., & Pawar, R. G. (2006). Value of
test cases in software testing. Management of Innovation and
Technology, 2006 IEEE International Conference On, 2, 668–
672. https://doi.org/10.1109/ICMIT.2006.262303

Kārkliņa, K., & Pirta, R. (2018). Quality metrics in Agile Software
Development Projects. Information Technology & Management
Science (RTU Publishing House), 21.

Kayes, I., Sarker, M., & Chakareski, J. (2016). Product Backlog Rating :
A Case Study On Measuring Test Quality In Scrum. Innovations
in Systems and Software Engineering, 12(4), 303–317.

Khan, R., Srivastava, A. K., & Pandey, D. (2016). Agile approach for
Software Testing process. 2016 International Conference System
Modeling & Advancement in Research Trends (SMART), 3–6.
https://doi.org/10.1109/SYSMART.2016.7894479

Kochhar, P. S., Xia, X., & Lo, D. (2019). Practitioners’ Views on Good
Software Testing Practices. 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP), 61–70. https://doi.org/10.1109/ICSE-
SEIP.2019.00015

Lai, S.-T. (2015). A Maintainability Enhancement Procedure for
Reducing Agile Software Development Risk. International
Journal of Software Engineering & Applications, 6, 29–40.

Lai, S.-T. (2017a). A User Story Quality Measurement Model for
Reducing Agile Software Development Risk. International
Journal of Software Engineering & Applications, 8(2), 75–86.

Lai, S.-T. (2017b). Test Case Quality Management Procedure for
Enhancing the Efficiency of IID Continuous Testing. Journal of
Software, 12(10), 794–806.
https://doi.org/10.17706/jsw.12.10.794-806

Laing, S., & Greaves, K. (2016). Growing Agile : A Coach ’ s Guide to
Agile Testing. Growing Agile.

Leffingwell, D. (2010). Agile software requirements: lean requirements
practices for teams, programs, and the enterprise. Addison-
Wesley Professional.

Lewis, W. E. (2009). Software Testing and Continuous Quality
Improvement Third Edithion. Taylor & Francis Group, LLC.

Matharu, G. S., Mishra, A., Singh, H., & Upadhyay, P. (2015). Empirical
study of agile software development methodologies: A
comparative analysis. ACM SIGSOFT Software Engineering
Notes, 40(1), 1–6.

Olausson, M., Rossbreg, J., Ehn, J., & Sköld, M. (2013). Pro team
foundation service. In Apress. Apress.

Padmini, K. V. J., Kankanamge, P. S., Bandara, H. M. N. D., & Perera,
G. (2018). Challenges Faced by Agile Testers: A Case Study.
2018 Moratuwa Engineering Research Conference (MERCon),
431–436.

Palmer, S. R., & Felsing, M. (2001). A practical guide to feature-driven
development. Pearson Education.

Paruch, L., Stray, V., & Blindheim, C. B. (2020). Characteristic traits of
Software Testers. Evaluation and Assessment in Software
Engineering (EASE 2020).
https://doi.org/https://doi.org/10.1145/3383219.3383270

Penmetsa, J. R. (2017). Agile testing. In Trends in Software Testing (pp.
19–33). Springer Science+Business Media.
https://doi.org/10.1007/978-981-10-1415-2

Pettichord, B. (2000). Testers and Developers Think Differently
Observations on understanding and utilizing the divergent traits
of key players on the software team. Software Testing and
Quality Engineering, 2, 42–47.

Pfaller, C., Wagner, S., Universit, T., & Wiemann, M. (2008). Multi-
Dimensional Measures for Test Case Quality. Software Testing
Verification and Validation Workshop, 2008. ICSTW’08. IEEE
International Conference On, 364–368.

Rajasekaran, V. A., & Dinakaran, M. (2015). Issues in Scrum Agile
Development Principles and Practices in Software Development.
Indian Journal of Science and Technology, 8(35).
http://www.indjst.org/index.php/indjst/article/view/79037/6740
2

Knowledge Management International Conference (KMICe) 2021, 1 February 2021
http://www.kmice.cms.net.my/

87

Rajasekhar, P., & Shafi, R. M. (2014). Agile Software Development and
Testing: Approach and Challenges in Advanced Distributed
Systems. Global Journal of Computer Science and Technology,
14(1).

Rajkumar, G., & Alagarsamy, D. K. (2013). The Most Common Factors
For The Failure Of Software Development Project‖. The
International Journal of Computer Science & Applications
(TIJCSA) Volume, 1.

Romli, R., Sarker, S., Omar, M., & Mahmod, M. (2020). Automated Test
Cases and Test Data Generation for Dynamic Structural Testing
in Automatic Programming Assessment Using MC/DC.
International Journal on Advanced Science, Engineering and
Information Technology, 10(1), 120.
https://doi.org/10.18517/ijaseit.10.1.10166

Schwaber, K., & Beedle, M. (2002). Agile software development with
Scrum (Vol. 1). Prentice Hall Upper Saddle River.

Serra, D., Grano, G., Palomba, F., Ferrucci, F., Gall, H. C., & Bacchelli,
A. (2019). On the effectiveness of manual and automatic unit test
generation: ten years later. Proceedings of the 16th International
Conference on Mining Software Repositories, 121–125.

Shrivastava, D. P., & Jain, R. C. (2010). Metrics for Test Case Design in
Test Driven Development. International Journal of Computer
Theory and Engineering, 2(6), 952–956.

Sophocleous, R., & Kapitsaki, G. M. (2020). Examining the Current
State of System Testing Methodologies in Quality Assurance.
Stray V., Hoda R., Paasivaara M., Kruchten P. (Eds). Agile
Processes in Software Engineering and Extreme Programming.
XP 2020., 240–249. https://doi.org/https://doi.org/10.1007/978-
3-030-49392-9_16

Stapleton, J. (1997). DSDM, dynamic systems development method: the
method in practice. Cambridge University Press.

StateOfAgile. (2018). 13th Annual Atate of Agile Report.
www.stateofagile.com

StateOfAgile. (2020). The 14th annual state of agile report.
Tahir, M. (2019). Agile Software Development Methods. Technology,

1(1), 10–20.
Tran, H. K. V., Ali, N. Bin, Börstler, J., & Unterkalmsteiner, M. (2019).

Test-Case Quality–Understanding Practitioners’ Perspectives.
International Conference on Product-Focused Software Process
Improvement, 37–52.

Tripathi, V., & Goyal, A. K. (2014). Agile Testing Challenges and
Critical Success Factors. International Journal of Computer
Science & Engineering Technology, 1 (5), 5(06), 632–638.

Uikey, N., & Suman, U. (2012). An empirical study to design an
effective agile project management framework. Proceedings of
the CUBE International Information Technology Conference,
385–390.

Unudulmaz, A., & Kalıpsız, O. (2020). TMMI Integration with Agile
and Test Process. ACM EASE Conference (EASE’20).
https://doi.org/https://doi.org/10.1145/3383219.3386124

Yamaura, T. (1998). How To Design Practical Test Cases. IEEE
Software, 15(6), 30–36.

Yu, J. (2018). Design and Application on Agile Software Exploratory
Testing Model. 2018 2nd IEEE Advanced Information
Management, Communicates, Electronic and Automation
Control Conference (IMCEC), 2082–2088

.

	I Introduction
	II AGILE SOFTWARE DEVELOPMENT
	III aGILE sOFTWARE TESTING
	IV iSSUES AND LIMITATIONS OF TEST CASE QUALITY
	V Conclusion
	References

