
Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia

http://www.kmice.cms.net.my 355

 Quality Factors of Test Cases: A Systematic Literature Review

Samera Obaid Barraood
1,2

, Haslina Mohd
1
, Fauziah Baharom

1
 and Mazni Omar

1

1Universiti Utara Malaysia, Malaysia, {sammorahobaid@gmail.com,, haslina@uum.edu.my, fauziah@uum.edu.my,

mazni@uum.edu.my}
2 Hadhramout University Mukalla, Yemen, (sammorahobaid@gmail.com}

ABSTRACT

The use of high quality test cases enable the

detection of software defect which eventually helps

in ensuring the quality of software before being

released to end users. Unfortunately, at the moment,

the criteria of good test cases are still vague without

any specific model to measure the quality of the test

cases. Therefore, this study aims to identify the

criteria of good test cases based on the findings

from studies conducted within the years 2010 to

2018. The Systematic Literature Review (SLR) by

Kitchenham approach was adapted in order to

comprehensively identify the related criteria. From

the review, a total of 310 related articles were found

from the IEEE Xplore, ACM Digital Library, and

Science Direct databases. The search was then

narrowed down using specific key-words and as a

result the number relevant articles ended up to 14.

From the review of these articles, 30 quality factors

of the test cases were identified. These quality

factors were further examined, categorized and

finalized to be included as the quality factors of test

cases evaluation metrics.

Keywords: Test case, test case evaluation metrics,

software testing, systematic literature review.

I INTRODUCTION

Software testing is a vital phase of producing high-

quality software in order to detect bugs. However,

the effectiveness of testing depends on the quality

of test cases whereby some test cases are better of

detecting failures compared to others (Chauhan,

2010; Inozemtseva & Holmes, 2014). During the

testing of software, errors should be revealed as

many as possible so that it will not jeopardize its

initial requirements and be up to the quality

acceptable level (Lewis, 2009; Liu & Miao, 2010;

Quadri & Farooq, 2010). There are many reasons

lead to software failures such as lack of

understanding, poor experience of test case design,

and inaccurately tackling varying situational

contexts among team members (Eldh, Hansson, &

Punnekkat, 2011; Gómez, Monte, & Monte, 2016;

Khan & Malik, 2017). Currently, there is no simple

formula or prescription for generating good test

cases since the designing of test cases is a complex

art (Kaner, 2003). To improve the productivity and

quality of software testing, testers or developers

must be able to measure the quality of test cases

and identify the most effective quality metrics (Lai,

2017).

Test case quality metrics are used in various

applications particularly in evaluating existing test

suites to ensure sufficient number of testing being

performed (Noor & Hemmati, 2015). This

indicates that the quality and testing metrics had

some importance (Kupiainen, Mäntylä, & Itkonen,

2015). This study is conducted to identify

appropriate and usable testing metrics for

measuring and evaluating the quality of test cases.

Three databases were scrutinized in this study

namely the IEEE Xplore, ACM Digital Library, and

Science Direct. From the review, 310 published

articles were discovered to discuss on test case

quality issue. After narrowing the search using a

specific keyword, the articles were reduced to 14

primary studies of good test cases. Further

discussions of the SLR protocol are presented in the

following section.

This paper is structured as follows: Section 2

provides the background and related work of test

cases quality. Section 3 describes how the research

method was conducted. Section 4 presents the

results and the last section provides the conclusion

of the study.

II BACKGROUND AND RELATED WORK

This section presents the important concepts related

to the quality of test cases.

It is important to note that testing should not show

the absence of defects since testing should be

exhaustive enough covering all possible ways in

which a system can be used even though it is

impossible in many cases (Kim, Hong, Bae, & Cha,

1999). This triggers the problem of deciding the

sufficient number of testing. One of the evaluation

suggestions was to ensure that the most significant

risks have been addressed by executing test cases

covering the most important functional and non-

functional requirements of the system as specified

by user (Aziz, 2017).

mailto:fauziah@uum.edu.my
mailto:mazni@uum.edu.my

Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia

http://www.kmice.cms.net.my 356

Two common concepts related to any unsuccessful

software testing are fault and failure. Failure refers

to the inability of a system or component to

perform a required function according to its

specification. This means that failure is the term

used to describe the problems in a system on the

output side (Bertolino & Marchetti, 2005; Chauhan,

2010). Fault, on the other hand, is a condition that

in actual causes a system to produce failure. Fault is

considered as having synonymous meaning to the

word defect or bug. Therefore, fault represents

reasons embedded in any phase of SDLC and

results in failures. Failures can also be described as

a manifestation of bugs (Chauhan, 2010). The terms

fault and failure are strongly related to each other.

For instance, some bugs/faults are hidden in the

sense that these are not executed, as they do not get

the required conditions in the system. As a result,

hidden bugs/faults may not always produce failures

whereby they may execute only in certain rare

conditions (Bertolino & Marchetti, 2005; Chauhan,

2010).

The effective mechanism of reducing the software

development risks has been a worth issue to be

explored further since it is reported that software

project success rate is always under 40% (Lai,

2017).

Lai (2017) summarizes the related risk events into

four types; incomplete requirement analysis, new

technology and environment evolution, frequent

requirements change, and imperfect and

inflexibility resources allocation management.

These types of risk are frequently difficult to avoid

or exclude. Hence, detection and prevention

planning is considered the best way to reduce the

risk of software developments and produce good

quality projects The quality is defined by ISO/IEC

9126 and ISO/IEC 25010 as the extent to which the

system satisfies the stated and implied needs of its

various users (Hussain & Mkpojiogu, 2015; ISO-

IEC 25010:2011, 2011; ISO/IEC 9126-1, 2000).

The following section will provide a background on

test cases quality.

A. Test Case Quality

A test case, a set of preconditions, inputs (including

actions, where applicable) and expected results, is

developed to determine whether or not the covered

part of the test item has been implemented correctly

(ISO/IEC/IEEE, 2015; Lin, Tang, & Kapfhammer,

2014).

In testing, the absence of all errors cannot be

guaranteed. Therefore, the most important

consideration in program testing is the design and

creation of effective test cases. In addition, the

design of test-case is necessary because a complete

testing is impossible to achieve. The most

significant strategy is to try to conduct the testing as

complete as possible (Myers, 2006).

A test case is an important asset in a software

development. In the software industry, a test case

design has been the principal since the quality of

the test case substantially affects how well the

system is tested, what failures will be found and

what coverage can be achieved. In addition, the

major purpose of test cases is to find the

undiscovered code errors or defects (Eldh et al.,

2011; Lai, 2017).

There is no simple formula or prescription for

generating “good” test cases because the procedure

too complex. Nevertheless, there are tests that are

good for software development purposes in

determining the type of information required

(Kaner, 2003). A good test case is one that has a

high probability of finding an as-yet undiscovered

error (Liu & Miao, 2010). The complexity of

designing good test cases comes from three

sources (Kaner, 2003):

 Test cases help to discover information.

Different types of tests are more effective for

different classes of information.

 Test cases can be “good” in a variety of ways.

No test case will be good in all of them.

 People tend to create test cases according to

certain testing styles, such as domain or risk-

based testing. Good domain tests are different

from good risk-based tests.

The number of revealed failures by test cases can

determine its effectiveness. If a test case reveals

more failures, then the quality of it will be higher

(Gómez et al., 2016).

Test case quality is a desirable and important goal

in test case generation (Gómez et al., 2016;

Palomba, Panichella, Zaidman, Oliveto, & Lucia,

2016; Sharma, Gupta, & Singh, 2015). Therefore,

the selection (Kazmi, Jawawi, & Mohamad, 2017)

and prioritization (Noor & Hemmati, 2015, 2017)

have to be prioritized since poorly design tests have

been proven to negatively impact future

maintenance activities (Karanikolas, Dimitroulakos,

& Masselos, 2017; Palomba et al., 2016), software

reliability (Sharma et al., 2015; Yadav & Yadav,

2015), and software productivity (Munir, Wnuk,

Petersen, & Moayyed, 2014).

Quality of test cases depends on the coverage of all

the functionalities in a system under testing. The

coverage of a quality test cases is often described

using certain criteria (Salman & Hashim, 2016).

Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia

http://www.kmice.cms.net.my 357

The test cases should then be validated against

some known quality standards to ensure that they

are in an acceptable form as well as (Boghdady,

Badr, Hashem, & Tolba, 2011). The quality

characteristics that can be used in the test design

techniques as included in the ISO/IEC 25010: 2011.

However, the model is difficult to be applied due to

its operational complications (Lampasona,

Heidrich, Basili, & Ocampo, 2012). This proves

that the quality factors/metrics need to be identified

in producing high-quality test cases. Therefore, this

study is conducted to identify the good quality

factors/metrics of test cases. The following section

provides an overview of the quality metrics used in

previous studies.

B. Quality Metrics

Software quality is essential because not only the

software is used in diverse area of various

applications but also several historical events have

indicated the impact of software failures around the

world. The consequences of software failures may

result in monetary and human losses. Thus, issues

related to software quality becomes a major

research area and should be unavoidable (Yadav &

Yadav, 2015).

Effective quality metrics of a test case measurement

is vital in improving the productivity and quality of

software (Lai, 2017). A metric is a function

assigned to a value of an attribute (Kaner & Bond,

2004). The IEEE 1061-1998 defines a software

quality metric as “A function whose inputs are

software data and whose output is a single

numerical value that can be interpreted as the

degree to which software possesses a given

attribute that affects its quality” (Software

Engineering Standards Committee, 1998). Several

studies have looked into the related aspects of

quality metrics. For example, Kaner et al. (2004)

provide ten questions to explain about the software

engineering metrics and a framework on how to

perform the evaluation whilst, Kupiainen, Mäntylä,

and Itkonen, (2015) present the reasons for and

effects of using metrics in industrial agile

development. In their study, Kupiainen et al. have

extracted 102 metrics from the primary studies in

their SLR by focusing only on the metrics used by

the agile teams and analyzing on the influence of

the identified metrics. They hypothesized that Agile

methods do not provide any special protection from

the dysfunctional use of metrics even when using

the core metrics of Agile development. The

hypothesis based on the results of their study

revealed that the use of metrics can have negative

effects and drive dysfunctional behavior. A metric-

driven approach proposed by Behkamal, Kahani,

Bagheri, and Jeremic (2014) consists of 20 metrics

for evaluating the inherent quality characteristics of

a dataset before it is released to the Linked Open

Data Cloud. Based on a SLR and the ISO/IEC

25012 standard they selected five inherent quality

characteristics, which are semantic accuracy,

syntactic accuracy, uniqueness, consistency, and

completeness. The test case quality measurement

model is proposed by (Lai, 2017) for enhancing the

efficiency of Iterative and Incremental

Development (IID) continuous testing. This model

consists of four indicators; qualified documentation,

manageability, maintainability and reusability

quality characteristics.

III RESEARCH METHODOLOGY

Systematic Literature Review (SLR) was chosen as

a research method because the study is more about

trying to understand a problem than trying to find a

solution to it (Kupiainen et al., 2015). Five reasons

for conducting an SLR include, first, to aggregate

and synthesize existing knowledge regarding a

research topic. Second, to identify gaps in the

earlier research. Third, to provide background

information to start investigating a new research

topic. Fourth, to provide a repeatable research

method which, when applied properly, should

provide sufficient detail to be replicated by other

researchers. Fifth, the detailed documentation of the

performed steps within the SLR enables in-depth

evaluation of the conducted study (Kupiainen et al.,

2015). In this study, SLR is used to perform an

extensive study on the quality of test cases as well

as identifying the factors and metrics that produce

good test cases within the period of 2010 to 2018.

The guidelines provided by Kitchenham (2007)

were used as a basis to develop the SLR protocol.

In the following subsections, the research questions,

search and selection process, inclusion and

exclusion criteria, and data extraction are described.

A. Research Questions

The main objective of this study is to determine the

factors that affect the quality of test cases. In

addition, the focus is more on the metrics and

measurements of the test cases that can produce a

good quality testing. Hence, the research questions

are:

RQ1: How much are the research activities

conduected related to the quality of test cases for

the last 8 years (2010-2018)?

RQ2: What are the quality factors/metrics for

producing a good test case?

Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia

http://www.kmice.cms.net.my 358

RQ3: Is the effectiveness of test case affected by

the quality factors/metrics?

B. Search and Selection Process

The search and selection process was performed for

determining related primary studies. The process

contains three steps as shown in Table 1.

Step 1: Select Source Repositories:

In this step, appropriate databases for this study

were selected. Three databases were used which

include IEEE Xplore, ACM Digital Library, and

Science Direct. Based on Kazmi et al. (2017)

recommendation, the first two were chosen because

both databases covered almost all important

conferences, while Science Direct include almost

all important journals in the domain of testing. The

process began by entering the keywords that are

related to the research questions.

To obtain the most relevant search results, the

string with (OR, AND) operators was switched

according to the time span between 2010 and 2018.

In this study two stages of searching were done; the

first one with string (“test case” OR “test case

quality”) AND (“metrics” OR “factors” OR

“indicators”). The total papers in this stage were

268, as presented in Table 1. However, once the

selected articles were fully read, it is observed that

some of the studies have used the term

“effectiveness of test cases” instead of the “quality

of test cases”. Therefore, a second stage of

searching was performed inside the selected data

depositories with this string; "test case

effectiveness" OR "the effectiveness of test case".

The total papers in this stage were 42, as portrayed

in Table 1.

Step 2: Read Titles and Abstracts

As shown in Table 1, papers were included and

excluded based on their titles and abstracts. The

content of each paper was skimmed through in case

of unclear abstracts. The selected papers in this step

were 39 from the first stage of research and 15 from

the second stage, so the total is 54 based on the

inclusion and exclusion criteria (section C). One of

these papers was replicated.

Step 3: Read Full Text

The studies included in this step were selected by

reading the full text. The output of this step, which

was only 14 papers (13 from the first stage and only

one from the second stage of search steps), was the

papers that were related to this study based on the

selection criteria.

Table 1. Studies Distribution After Applying Inclusion/Exclusion

Criteria.

Data

Repositories

First Stage Second Stage

Step

1

Step

2

Step

3

Step

1

Step

2

Step

3

IEEE 52 12 4 11 5 1

ACM 201 23 8 3 3

Science

Direct

15 4 1 28 7 0

Total 268 39 13 42 15 1

 13 Relevant

articles

1 Relevant articles

C. Inclusion and Exclusion Criteria

Inclusion Criteria:

- Papers that present the factors or metrics of

testing quality.

- Papers that talk about good test cases.

Exclusion Criteria:

- Papers that are not in English.

- Papers that do not contain the quality factors or

metrics.

- Papers that do not relate to testing.

- Books and workshops.

D. Data Extraction

The data extraction was performed by reading the

complete text of all the selected papers. The data

collected from the selected papers were extracted in

two phases. In the first phase, the standard

information (Kithcenham, 2007) was collected,

which include the title, authors name, publication

year, and summary of the study. The second phase

contains the information that directly related to the

research questions of this study.

IV RESULTS

This section presents the results of the SLR and

provides answers for the research questions. The

following subsections describe an overview of the

primary studies and present the quality factors/

metrics of the test case.

RQ1: How much are the research activities in the

quality of test cases for the last 8 years (2010-

2018)? The answer for this question is depicted in

Tables 1 and 2. The total number of papers that are

related to quality testing cases is 310. However,

only 14 papers are deemed to be the most related as

listed in Table 2. Subsection A provides more

details about the selected studies.

Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia

http://www.kmice.cms.net.my 359

A. Overview of Studies

This section presents the overview of the primary

studies related to quality test cases. The 14 selected

studies were discovered from the three data

depositories (IEEE Xplore, ACM Digital Library,

and Science Direct) within the period of 2010-2018

(as in Table 1). Most of the studies (8) were

published in the ACM Digital Library, followed by

IEEE Xplore (5) and Science Direct (1).

Table 2 presents the details of the 14 selected

studies. The most similar study is S3 which was

conducted in 2017. However, the study only

focuses on the test case selection techniques instead

of the quality of test cases. Thus, for the past eight

years, this was the first study performed to identify

the quality factors and metrics in producing high-

quality test cases as well as good testing.

Table 2. Details of the Selected Studies.

Study Reference Year Study

Type

Study Focus Apply on

S1 Yadav & Yadav 2015 Software reliability

S2 Juan, Lizhi, Weiqing, &

Song,

2010 Reusability of test cases

S3 Kazmi et al. 2017 SLR Test case selection Regression testing

S4 Noor & Hemmati 2015 Test case quality for prioritization Five open source

systems (java

projects)

S5 Sharma et al. 2015 Online

survey

Software reliability

S6 Noor & Hemmati 2017 Empirical

study

Test case prioritization five open source

systems (java

projects)

S7 Karanikolas,

Dimitroulakos, &

Masselos

2017 Predicting software maintenance. Object-oriented

software

S8 Munir et al. 2014 a

controlled

experiment

TDD (Test Driven Development) on

internal, external code quality and

productivity

Professional java

developers

S9 Palomba et al. 2016 Empirical

study

Automatic test case generation 110 Open source

projects from

SourceFroge

S10 Fraser & Zeller 2010 Test case generation Object oriented

classes

S11 Gómez et al. 2016 Empirical

study

Impact of computer science programs on

the quality of test cases generation.

Black box and

white box methods

S12 Inozemtseva & Holmes 2014 fault detection effectiveness Five systems

(large java

programs)

S13 Eldh et al. 2011 Empirical

study

Analysis of test case mistakes in test

design phase

500 test cases by

novice testers

S14 Perez, Alexandre;

Abreu, Rui; van

Deursen

2017 Diagnosability of a test suite for

spectrum-based fault localization

approaches

As shown in Table 2, most of the studies (28.57%)

were conducted in 2017. The others were mostly

carried out in 2015 (21.40%) and 14.28% in 2010,

2014, and 2016, followed by one in 2011. Pertaining

to the emphasized issue (column five), it seems that

there is no study focused exactly on the quality of test

cases. Most of these studies are generally either

focusing on the use of or proposing quality metrics

for specific purposes. Among the purposes include

test case generation [S5, S9, S11], test case selection

[S3], test case prioritization [S4, S6], software

maintenance [S7, S9], software reliability [S1, S5],

productivity [S8], diagnosability of a test suite [S14],

and test case design mistakes analysis [S13].

Furthermore, the table portrays that almost all studies

described on the quality of test cases in terms of

structural design Test Case Quality Metrics.

Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia

http://www.kmice.cms.net.my 360

RQ2: What are the quality factors/metrics for producing

a good test case? The answer to this question is

described in Table 3. The results show that in the

period of 2010 to 2018, the quality of test cases is

important in various domains and techniques

particularly in software reliability [S1, S5], software

maintenance [S7, S9], software productivity [S8],

reusability [S2], test case selection [S3], test case

generation [S9, S10, S11], test case prioritization [S4,

S6], and test suite diagnosability [S14].

Table 3. Test Case Quality Metrics used in the Primary Studies.

No Metric Description Studies

1. Test Team Experience Skills and experience of test team on software

testing.

S1, S11

2. Quality of Document Test Cases

(QDT)

Test cases that are designed to expose defects. S1

3. Fault Density S5

4. Code Defect Density S5

5. Mean Time to Failure S5

6. Test Case Understandability How easy to understand a test case in terms of its

internal and external descriptions?

S2

7. Test Case Changeability Changeable structure and style of a test case which

allows changes to be made easily, completely, and

consistently.

S2, S7

8. Test Case Independency The measurement of the degree of dependency

among one test case to other test cases.

S2

9. Universal It is reflected from test scenarios and test fields in

which a test case can be executed.

S2

10. Test Cohesion (Lack of

Cohesion of a Test Method)

Textual similarity among the tested methods. S9

11. Test Coupling (Coupling

Between Test Methods)

Methods with high coupling have higher textual

similarity with the other methods contained in the

test suite.

S9

12. Size of Test Case It refers to the LOC (Line of Codes) in the test

method or the number of assertions in a test case.

S4, S6

13. Historical Fault Detection

It considers a test case to be effective in the current

release if the same test was also able to detect faults

in previous releases.

S4, S6

14. Code Change-Related Metrics

(Changed Method Coverage)

Refers to the number of unique methods calls that

are called by the test and have been changed since

the previous version.

S4, S6

15. Method Coverage Refers to the number of unique methods called from

the test case (directly or indirectly) during the test

execution.

S3, S4, S6

16. Similarity-Based Metric The similarity between test cases is defined based on

their sequences of method calls, extracted from

execution traces.

S4, S6

17. Mutation Analysis It seeds artificial defects (mutations) into programs;

a non-detected mutation indicates a weakness in the

test suites.

S10, S12

18. Coverage-based Test Adequacy

Criteria

Refers to how much of the program is executed

when the test case run.

S3, S6

19. Fault-based Test Adequacy

Criteria

Measures the quality of a test case by their ability to

detect known faults, as an estimate for their ability

for detecting unknown faults.

S3, S6

20. Statement Coverage The degree to which a software is being tested. S3, S12

21. Decision/Branch Coverage Refers to the fraction of decisions (branches) in the

program that are executed by its test suite.

S3, S12,

S8, S9,

S14

22. Modified Condition Coverage For a test suite to be modified based on adequate

condition.

S3, S12

Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia

http://www.kmice.cms.net.my 361

23. Test Suite Size The number of test cases in the test suite. S9, S12

24. McCabe’s Cyclomatic

Complexity

Indicates how difficult a program or module to be

tested and maintained.

S8

25. Fault detection capability The function call profile with the fault detection

capability with the goal to reduce cost is used as an

effective measure.

S3

26. Fault revealing capability Defect discovery capability is measured and

compared with retest-all for effective indicator.

S3

27. Failure frequency rate Most frequent failures with relationship to test cases

are used as effective measure.

S3

28. Fault detection rate Fault detection rate with the cost of analysis used as

effective measure.

S3

29. Defect Discovery Time Test case execution profile with defect discovery

time used as effective measure.

S3

30. DDU (Density- Diversity-

Uniqueness)

It provides an assessment of its efficiency by

pinpointing the root cause of failure given when an

error is detected.

S14

Thirty quality metrics are identified from the 14

primary studies as shown in Table 3. The most used

metric is Coverage [S3, S4, S6, S8, S9, S12 and S14].

The Coverage metric has various types such as

statement, branch, method, and condition. Only one

of the studies used all these types [S3], while others

used only some of it [S4, S6, S8, S9, S12, and S14].

Coverage is considered as a good indicator to be used

as a proxy for evaluating the quality and a

completeness of test suites (Kazmi et al., 2017).

However, some studies [S3, S12] do not

recommended using coverage as the only measure

because it is insufficient and not a good quality

measurement for test suite effectiveness. The studies

recommended that it would be better to combine the

use of coverage with other metrics. [S9, S14] used

branch coverage metric for comparison with their

proposed metrics. [S10] commented the used of

mutations rather than coverage because the former

not only know where to test but also what to test for.

On the other hand, [S13] instead of providing any

quality metrics for usage, the authors try to improve

the quality of test cases by analyzing the mistakes of

test cases based on the knowledge of test cases

writers. They found that most of the test cases have a

low level of quality because of the lack of

understanding regarding the corresponding

knowledge, which is important for test case design.

In general, all identified quality metrics from the

selected primary studies are used for producing good

test cases. The metrics are identified either based on

the previous release of the system, current release,

similarity, diagnosability of the test cases, or

experience of the test team.

RQ3: Is the effectiveness of test case affected by the

quality factors/metrics? Based on [S4, S11], the test

case effectiveness refers to the ability of the test case

to detect more defects or determine the number of

failures revealed. By revealing more failures, the

chances of producing a more quality test cases will be

higher. Thus, the results show that the test cases

effectiveness is influenced by the quality of test case

metrics. However, the coverage metric should not be

used alone because it is not a good predictor of test

case effectiveness [S3, S12].

V CONCLUSION

This study provides an overview of the test case

quality metrics. In particular, this study identifies

good test cases suggested by previous researchers,

which consequently may lead towards high-quality of

software testing. This SLR had identified 30 quality

measures based on the 14 relevant articles as stated in

Table 2. Based on the previous studies, software

quality metrics significantly affected the effectiveness

of the test cases in revealing the software defects in

most system applications. In addition, these metrics

can be used not only for evaluating the quality of test

cases for different applications but also for being able

to generate good quality of the test cases. This SLR

will be expanded in the future by including more

articles from various data depositories that are related

to software quality metrics and test cases. The plan

will also include the construction of standard for

quality of test cases that can be applied in various

applications.

ACKNOWLEDGEMENT

The co-author wishes to thank Universiti Utara
Malaysia in funding this study under the PBIT grant,
S/O code 12319, and Research and Innovation
Management Centre, Universiti Utara Malaysia,
Kedah for the administration of this study.

REFERENCES

Aziz, Y. (2017). Exploring A Keyword Driven Testing Framework: A
Case Study At Scania IT.

Barbara Kitchenham. (2007). Guidelines For Performing Systematic

Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia

http://www.kmice.cms.net.my 362

Literature Reviews In Software Engineering (Keele Univ).

Durham, UK.

Behkamal, B., Kahani, M., Bagheri, E., & Jeremic, Z. (2014). A Metrics-

Driven Approach For Quality Assessment Of Linked Open Data.

Journal Of Theoretical And Applied Electronic Commerce
Research, 9(2), 64–79. Http://Doi.Org/10.4067/S0718-

18762014000200006

Bertolino, A., & Marchetti, E. (2005). A Brief Essay On Software
Testing. Software Engineering, The Development Process, 3.

Boghdady, P. N., Badr, N. L., Hashem, M., & Tolba, M. F. (2011). A

Proposed Test Case Generation Technique Based On Activity
Diagrams. International Journal Of Engineering & Technology

IJET-IJENS, 11(03), 37–57.
Chauhan, N. (2010). Software Testing: Principles And Practices. Oxford

University Press.

De S Campos Junior, H., Araújo, M. A. P., David, J. M. N., Braga, R.,
Campos, F., & Ströele, V. (2017). Test Case Prioritization: A

Systematic Review And Mapping Of The Literature. In

Proceedings Of The 31st Brazilian Symposium On Software
Engineering (Pp. 34–43). ACM.

Eldh, S., Hansson, H., & Punnekkat, S. (2011). Analysis Of Mistakes As

A Method To Improve Test Case Design. In Fourth IEEE
International Conference On Software Testing, Verification And

Validation Analysis (Pp. 70–79). IEEE Computer Society.

Http://Doi.Org/10.1109/ICST.2011.52
Fraser, G., & Zeller, A. (2010). Mutation-Driven Generation Of Unit

Tests And Oracles. In ISSTA’10 (Pp. 147–157). Trento, Italy:

ACM.
Gómez, O. S., Monte, B., & Monte, B. (2016). Impact Of CS Programs

On The Quality Of Test Cases Generation : An Empirical Study

Categories And Subject Descriptors. In ICSE ’16 Companion.
Austin, TX, USA: ACM. Retrieved From Doi:

Http://Dx.Doi.Org/10.1145/2889160.2889190

Hussain, A., & Mkpojiogu, E. O. C. (2015). An Application Of ISO/IEC
25010 Standard In The Quality-In-Use Assessment Of An Online

Health Awareness System. Jurnal Teknologi, 77(5), 9–13.

Inozemtseva, L., & Holmes, R. (2014). Coverage Is Not Strongly
Correlated With Test Suite Effectiveness Categories And Subject

Descriptors. In ICSE’14 (Pp. 435–445). Hyderabad, India: ACM.

Retrieved From Http://Dx.Doi.Org/10.1145/2568225.2568271
ISO-IEC 25010:2011. (2011). ISO-IEC 25010: 2011 Systems And

Software Engineering-Systems And Software Quality

Requirements And Evaluation (Square)-System And Software
Quality Models. ISO.

ISO/IEC/IEEE. (2015). ISO/IEC/IEEE International Standard - Software

And Systems Engineering--Software Testing--Part 4: Test
Techniques. ISO/IEC/IEEE 29119-4:2015.

Http://Doi.Org/10.1109/IEEESTD.2015.7346375

ISO/IEC 9126-1. (2000). Information Technology — Software Product
Quality — Part 1: Quality Model. Iso/IEC Fdis 9126-1. ISO; IEC.

Retrieved From

Http://Www.Cse.Unsw.Edu.Au/~Cs3710/Pmmaterials/Resources/
9126-1 Standard.Pdf

Juan, Z., Lizhi, C., Weiqing, T., & Song, Y. (2010). Test Case Reusability

Metrics Model. In 2nd International Conference On Computer
Technology And Development (Pp. 294–298).

Kaner, C. (2003). What Is A Good Test Case ?, 1–16.

Kaner, C., & Bond, W. P. (2004). Software Engineering Metrics : What
Do They Measure And How Do We Know ?, 1–12.

Karanikolas, C., Dimitroulakos, G., & Masselos, K. (2017). Early

Evaluation Of Implementation Alternatives Of Composite Data

Structures Toward Maintainability. Transactions On Software

Engineering And Methodology, 26(2), 44. Retrieved From

Https://Doi.Org/10.1145/3132731
Kazmi, R., Jawawi, D. N. A., & Mohamad, R. (2017). Effective

Regression Test Case Selection : A Systematic, 50(2).
Khan, H. H., & Malik, M. N. (2017). Software Standards And Software

Failures : A Review With The Perspective Of Varying Situational

Contexts, 17501–17513.
Kim, Y. G., Hong, H. S., Bae, D.-H., & Cha, S. D. (1999). Test Cases

Generation From UML State Diagrams. IEE Proceedings-

Software, 146(4), 187–192.

Kupiainen, E., Mäntylä, M. V, & Itkonen, J. (2015). Using Metrics In

Agile And Lean Software Development – A Systematic Literature

Review Of Industrial Studies. Information And Software
Technology, 62, 143–163.

Http://Doi.Org/10.1016/J.Infsof.2015.02.005

Lai, S.-T. (2017). Test Case Quality Management Procedure For
Enhancing The Efficiency Of IID Continuous Testing. Journal Of

Software, 12(10), 794–806.

Http://Doi.Org/10.17706/Jsw.12.10.794-806
Lampasona, C., Heidrich, J., Basili, V. R., & Ocampo, A. (2012).

Software Quality Modeling Experiences At An Oil Company.
Proceedings Of The ACM-IEEE International Symposium On

Empirical Software Engineering And Measurement - ESEM ’12,

243. Http://Doi.Org/10.1145/2372251.2372296
Lewis, W. E. (2009). Software Testing And Continuous Quality

Improvement Third Edition. Boca Raton London New York:

Taylor & Francis Group, LLC.
Lin, C., Tang, K., & Kapfhammer, G. M. (2014). Test Suite Reduction

Methods That Decrease Regression Testing. INFORMATION AND

SOFTWARE TECHNOLOGY.
Http://Doi.Org/10.1016/J.Infsof.2014.04.013

Liu, P., & Miao, H. (2010). A New Approach To Generating High Quality

Test Cases. IEEE Computer Society, 1, 71–76.
Http://Doi.Org/10.1109/ATS.2010.21

Munir, H., Wnuk, K., Petersen, K., & Moayyed, M. (2014). An

Experimental Evaluation Of Test Driven Development Vs. Test-
Last Development With Industry Professionals. Proceedings Of

The 18th International Conference On Evaluation And Assessment

In Software Engineering - EASE ’14, 1–10.
Http://Doi.Org/10.1145/2601248.2601267

Myers, G. J. (2006). The Art Of Software Testing. John Wiley & Sons.

Noor, T. Bin, & Hemmati, H. (2015). A Similarity-Based Approach For
Test Case Prioritization Using Historical Failure Data. In 26th

International Symposium On Software Reliability Engineering

(ISSRE) (Pp. 58–68). IEEE.
Noor, T. Bin, & Hemmati, H. (2017). Studying Test Case Failure

Prediction For Test Case Prioritization. In PROMISE. Toronto,

Canada: ACM. Retrieved From
Https://Doi.Org/10.1145/3127005.3127006

Palomba, F., Panichella, A., Zaidman, A., Oliveto, R., & Lucia, A. De.

(2016). Automatic Test Case Generation : What If Test Code
Quality Matters ? In ISSTA’16 (Pp. 130–141). Saarbrücken,

Germany: ACM. Retrieved From

Http://Dx.Doi.Org/10.1145/2931037.2931057
Perez, Alexandre; Abreu, Rui; Van Deursen, A. (2017). A Test-Suite

Diagnosability Metric For Spectrum-Based Fault Localization

Approaches. In The 39th International Conference On Software
Engineering (ICSE) (Pp. 654–664). IEEE.

Http://Doi.Org/10.1109/ICSE.2017.66

Quadri, S. M. K., & Farooq, S. U. (2010). Software Testing – Goals,
Principles, And Limitations. International Journal Of Computer

Applications, 6(9), 7–10.

Salman, Y. D., & Hashim, N. L. (2016). Advanced Computer And
Communication Engineering Technology: Proceedings Of

ICOCOE 2015. Lecture Notes In Electrical Engineering,

362(December). Http://Doi.Org/10.1007/978-3-319-24584-3
Sharma, H., Gupta, D., & Singh, R. (2015). Ranking Based Software

Quality Assessment Using Experts Opinion. In 2015 International

Conference On Computational Intelligence And Communication

Networks. IEEE. Http://Doi.Org/10.1109/CICN.2015.277

Software Engineering Standardscommittee. (1998). IEEE Standard For A

Software Quality Metrics Methodology, IEEE Std 1061-1998.
USA: IEEE.

Yadav, H. B., & Yadav, D. K. (2015). A Fuzzy Logic Based Approach
For Phase-Wise Software Defects Prediction Using Software

Metrics. INFORMATION AND SOFTWARE TECHNOLOGY.

http://doi.org/10.1016/j.infsof.2015.03.001

