
Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia   

http://www.kmice.cms.net.my/   305 

Design and Implementation of A Tool to Integrate Automated Test Data 

Generation and Automatic Programming Assessment 

Anas Farhan Tajudin and Rohaida Romli 
Universiti Utara Malaysia, Malaysia, {email@anasfarhan.com, aida@uum.edu.my} 

 

ABSTRACT 

Nowadays, manually assessing students’ 

programming exercises has been identified as 

among of the toughest tasks to lecturers of 

programming courses on top of their high routine 

workloads. Thus, Automatic Programming 

Assessment (or APA) has turn out to be an 

alternative method to automatically assess these 

students’ programming exercises effectively. In 

APA, test data generation process has mainly being 

a part of performing dynamic testing on students’ 

programming solutions. Diverse of automated test 

data generation (or ATDG) methods have been 

researched in past few years. However, these 

methods have not been sufficiently and 

systematically adapted by researches in APA. 

Nonetheless, it appears very limited studies have 

put in some efforts to realize an integration of APA 

and ATDG as a complete APA system (or APAS) 

so as to provide a better quality and precise 

program testing on students’ programs. So as to 

realize this limitation, this paper presents the design 

and implementation of an APAS named Automated 

Java Programming Assessment Tool or Auto-JPAT 

that integrates a recent proposed ATDG method 

named DyStruc-TDG (which covers a dynamic-

structural testing). As a whole, Auto-JPAT 

contributes as a means to educators of 

programming courses to assess students’ 

programming solutions via a dynamic-structural 

testing regardless of having any sufficient 

knowledge on design of test cases.  

Keywords: Automatic Programming Assessment 

(APA), Test Data Generation (TDG), dynamic-

structural testing.  

I INTRODUCTION 
In college or university, first year students who are 
enrolling in Computer Science, IT or Computer 
Engineering related programmes are compulsory to 
register a subject named ‘Introduction to 
Programming’ or any identical one so as to allow 
them proceed with the advanced level of 
programming subjects. Having to learn 
programming, practical programming exercises and 
hands on are necessarily required which are 
commonly provided through computer lab sessions 

and assignments. During lab sessions, it is not 
sufficient to acquire any feedback instantly from 
lecturers as the process requires longer time to deal 
with a numerous number of students (Tahbidar and 
Kalita, 2011). It is pivotal for students to learn a 
basic programming skill in order to advance to the 
higher levels. This is the main reason why most of 
the students do not like the idea of being given too 
many exercises and assignments by their lecturers. 

As for grading students’ programming assignments, 
it will mostly consume most of the lecturers’ time 
load and it is burdensome and tiring task (Liang et 
al., 2009) particularly when a large number of 
students are currently registered in a class 
(Tahbidar and Kalita, 2011). Moreover, it 
significantly increases their workload, especially 
when marking longer codes. Therefore, Automatic 
Programming Assessment (or APA) would be 
solving these issues by helping the lecturers in 
reducing their workload from marking the 
assignments submitted by students. Furthermore, 
APA offers a systematic and consistent means of 
testing in assessing students’ programming 
assignments. Generally, when students submitted 
their assignments, an APA tool (or is ideally called 
APA System: APAS) will automatically assess 
these assignments based on a schema pre-set by 
their lecturers and provide an instant assessment 
result to students. Thus, APAS has been becoming 
more pivotal in explicitly supporting teaching and 
learning programming more effectively (Latiu et 
al., 2012). Lots of APAS were developed and tested 
in various recent studies (Jackson, 2000; Liang et 
al., 2009; Blumenstein et al., 2004; Lim et al., 
2008; Brause, 2014; Tillmann et al., 2013; Gotel et 
al., 2007; Alemán, 2011; Auffarth et al., 2008; 
Sherman et al., 2013; Nunome et al., 2010; Queirós 
& Leal, 2012; Saikkonen et al., 2001; Al Shamsi & 
Elnagar, 2012), such as Assyst, BOSS, GAME, 
TRAKLA2, PASS, ELP, CourseMaster, 
WeBWorK-JAG, SAC, Oto, ICAS, PETCHA, 
eGrader, and Bottlenose. 

Software testing, which is a foundation of APA 
(Ihantola et al., 2010), is defined as a technique to 
discover, measure, and disclose errors happened in 
a program (Korel, 1990). In order to rate the quality 
of a program (Romli et al., 2010) produced by a 
student, the program needs to be tested hence, this 
is where software testing plays its role. Software 



Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia   

http://www.kmice.cms.net.my/   306 

testing can be distinguished in two types which are 
static testing and dynamic testing. By a definition, 
static testing is a testing, which is done without 
executing the program itself (Edvardsson, 1999). In 
contrast, program execution is required in dynamic 
testing with test data set. Furthermore, in dynamic 
testing, its test can be segregated into two variants 
which are black-box and white-box testing. Based 
on a recent review (Monpratarnchai et al., 2014), 
black-box testing, which is also recognized as 
functional testing, is a testing which only needs the 
output of the program only without having to access 
its source code. Meanwhile, white-box testing, 
which is also recognized as structural testing, 
requires to access the internal source code of the 
program, hence test data is a necessity to conduct 
these tests. 

Test data generation in the area of software testing 
refers to an approach to generate a test data set to 
fulfil a certain criterion of testing (Kitaya and 
Inoue, 2016). It is acknowledged that the test data 
generation plays an influential role in APA in 
conducting test, yet they are not utilized frequently 
in recent studies (Rahman, 2007; Reid, 2015; Romli 
et al., 2015). With the absence of a test data 
generator, lecturers would have to set up the 
schema or generate the test data manually to 
facilitate them in marking students’ programming 
assignments. Thus, we developed an APAS that is 
called  Automated Java Programming Assessment 
Tool “(or Auto-JPAT)  that integrates  our recent 
proposed method namely DyStruc-TDG to allow 
automated programming assessments that focuses 
on dynamic-structural testing (utilizing MC/DC and 
path coverage testing criteria). 

The content of the remaining sections are organized 
as follows: Section II provides a brief discussion on 
some related works. Section III details out the 
design of Auto-JPAT. Section 1V reveals on the 
implementation of Auto-JPAT and finally, Section 
V concludes the paper. 

II RELATED WORK 
It has been more than fifty years since ‘Automatic 
Programming Assessment’ (APA) made its 
introduction. Based on the review by Douce et al. 
(2005), automated test-based assessment systems 
are grouped into three generations in which can be 
described from early assessment tools to command-
line interface (CLI) or graphical user interface 
(GUI) distributed systems and later is developed as 
web-based systems. Later on, Ihantola et al. (2010) 
also provided a more detailed review of latter 
modern assessment tools. In their review, they have 
identified that most of the tools were developed for 
one specific class or assignment which eventually 
forced the programming instructors or lecturers to 

develop their own the test data frameworks to 
observe the functionality and behaviour of the 
programs they required for. 

APA has been a great help especially to the 
lecturers  who found manually marking and grading 
the students’ assignments is a burden task. Since 
APA provides instant feedback, the students’ 
learning process will be faster and enhanced 
effectively. A recent study conducted by Liang et 
al. (2009) outlined that there were a small number 
of APA that gave rich, critical and timely response. 
More details on the advantages of APA has been 
outlined in a study conducted by Rahman and 
Nordin (2007). On top of that, a review study 
conducted by Romli et al. (2014) which focused on 
the APA trends stated that dynamic testing is the 
most used testing method in APA. The study also 
outlined that black-box testing is extensively used 
in APA with correctness factor as the most popular 
quality factor since it provides satisfaction to the 
lecturers while assessing the assignments. In term 
of test data generation, most of them are done 
manually instead of automatically generate them. In 
a summary, the development of APA has been a 
great platform for lecturers in reducing their time 
and workload for marking and grading the students’ 
assignments. 

In software testing, it is been many years since 
various techniques for Automated Test Data 
Generation (ATDG) have been studied. Test data 
generators were commonly developed as tools to 
support ATDG. Based on Korel (1990), test data 
generators are divided into three types: path-wise 
test data generators, data specification generators, 
and random test data generators. From the study, 
the author presented path-wise test data generator 
using dynamic testing method. On the other survey 
by Edvardsson (1999), the author presented a test 
data generator which is consisted of a path selector, 
a program analyser, and a generator itself. 
However, it is summarized that the approach is 
mainly focused on structural testing. Another 
survey by Romli et al. (2014) on ATDG indicated 
that the most test data generations are mainly 
utilized white-box testing techniques, while path 
coverage is primarily used as the metric for 
coverage. Another study done by Monpratarnchai et 
al. (2014) also focused on path coverage metric via 
the usage of symbolic execution with Java 
PathFinder (JPF) in generating test data. 

APA has been gaining more popularity from 
researchers in Computer Science eduaction in order 
to assess students’ programming assignments. 
However, there are still limited studies regarding 
the integration of APA together with ATDG that 
focus on dynamic-structural testing. In an earlier 



Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia   

http://www.kmice.cms.net.my/   307 

study conducted by Ihantola (2006) utilized a 
symbolic execution technique with the extension of 
JPF library to generate test data set. The technique 
itself is integrated with APA. In another study by 
Tillman et al. (2013), they also utilized dynamic 
symbolic execution technique for test data 
generation. Another recent study by Romli et al. 
(2015) presented a framework for test data 
generation that covered both structural and 
functional testing in which utilized positive and 
negative testing technique for its test data 
generation. This study proposed an integration of 
specification derived test and simplified boundary 
analysis techniques to derive the required test data. 
Similarly to the other two studies, this study also 
focused the criteria of path coverage testing. 

III DESIGN OF Auto-JPAT
 
 

Auto-JPAT is a web-based application or tool 
which has basic features or modules including basic 
content management system and file management 
system. Since DyStruc-TDG method is integrated 
with the tool, it also covers basic APAS features. 
Figure 1 depicts an overall design view of Auto-
JPAT. A lecturer is obliged to devise programming 
exercises with their solution models. The students 
play their parts by preparing and submitting 
programming solutions for each programming 
exercise. They will be notified with instant 
feedbacks as the final assessment results after Auto-
JPAT finished assessing their programming 
solutions. The process of test data generation will 
result a schema of test set, which includes a 
possible set of test data based on positive testing 
criteria and weight values derived from weighted 
scale set by the lecturers. 

Figure 1. Overall view of Auto-JPAT 

 

Three user group accesses are created for invoking 
all functions in Auto-JPAT, which are Super 
Administrator (SuperAdmin), lecturers/instructors, 

and student. The privileges for these group accesses 
are as follow:  

i) Super Administrator (SuperAdmin)  
SuperAdmin has absolute privileges or authorities to 
access all administrative features in Auto-JPAT 
such as user management and system management. 
For evaluation, SuperAdmin is responsible to set up 
the Auto-JPAT including manage users, manage the 
course groups, and manage course subjects to 
ensure the evaluation sessions go smoothly without 
hitch. These administrative privileges are only 
given to SuperAdmin.  

ii) Lecturer/Instructor  
Lecturer (or Instructor) is given a number of 
privileges. These privileges are including learning 
materials (notes) management and assignments 
management. In term of learning materials 
management, the lecturer is able to upload (add), 
update the details (edit), download (view), and 
remove (delete) the learning materials. While for 
assignments management, the lecturer can add, edit, 
view, and delete the assignment. In addition to view 
the uploaded assignment, the lecturer is able to 
view the test cases (test data) generated and update 
the weightage for each test case generated. And 
also, the lecturer is able to view the list of students’ 
assignment submission. 

iii) Student  
Student is the user group access given with very 
limited privileges including download (view) the 
learning materials (notes), and assignment 
management functions such as view the 
assignment, upload the assignment solution file, 
and assess the assignment.  

For lecturers, there are eight (8) use cases which are 
Manage User Profile, Manage Assignment, Create 
New Assignment, View Assignment, Prepare/Edit 
Test Data, View Submission List, View Course 
Planner, and Login use cases. Figure 2 illustrates all 
use cases for the lecturers. For students, there are 
four (4) use cases which are Manage User Profile, 
Manage Assignment, View Course Planner, and 
Login use cases. Figure 3 illustrates all use cases 
for the students. Table 1 lists the overall mapping 
between functions or features in Auto-JPAT and 
group accesses in Auto-JPAT. 



Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia   

http://www.kmice.cms.net.my/   308 

 
Figure 2. Use Case Diagram for Lecturers 

 

 
Figure 3. Use Case Diagram for Students 

 
Table 1. Overall Mapping Between Functions and User Group 

Accesses in Auto-JPAT 

Function/Privilege 

Group Access 

SuperAdmi

n 
Lecturer Student 

Academic Session Management - 

add/edit/view/delete 
√   

Academic Semester Management - 
add/edit/view/delete 

√   

Course Management - 

add/edit/view/delete 
√   

Course Group Management - 
add/edit/view/delete 

√   

User Management functions - 

add/edit/view/delete 
√   

User Profile Management - edit/view √ √ √ 

View Enrolled Courses  √ √ 

View Course Planner  √ √ 

Add New Assignment  √  

View Assignment: Details  √ √ 

View Assignment: Test Data  √  

View Assignment: Assessment Details   √ 

View Assignment: Submission List  √  

View Schema Solution File  √  

View Submission Solution File  √ √ 

Assess Assignment   √ 

Delete Assignment  √  

Add New Learning Material  √  

View Learning Material  √ √ 

Delete Learning Material  √  

 

IV IMPLEMENTATION OF Auto-JPAT
 
 

The process of implementing Auto-JPAT was done 

by adopting an extreme prototyping model. Since 

Auto-JPAT is a web-based system, the model is 

suitable to be used as it is applicable for super-fast 

project cycling and delivery (Dow, 2011). A 

development of Auto-JPAT also utilized the 

technology of JavaServer Pages (JSP) and DyStruc-

TDG has been integrated as part of the system. 

Table 2 has listed the related components and 

software tools used in the implementation of Auto-

JPAT. 

After the development of Auto-JPAT has been 

accomplished, the Auto-JPAT had undergone a 

prototype testing to ensure all functions work 

properly and smoothly so as the planned user 

experience evaluation will be conducting with 

absence of any problem. In case of unwanted bugs 

and errors discovered during the testing, they were 

fixed out immediately. Testing for Auto-JPAT was 

performed with the following setup of hardware and 

software:  

i) Hardware setup - The testing was performed on 

Windows Operating System (OS) based 

computer (Windows 10 Pro) that can access 

Auto-JPAT. 
ii) Software setup - The testing was performed 

with required software components as listed in 
Table 2. 

Table 2. Component Tools Used in Implementation of Auto-JPAT 

Component 

Tool 

Purposes 

Eclipse IDE Neon.2 A Java EE IDE to develop Auto-JPAT 

including designing the interfaces for 

webpages of Auto-JPAT and integrating 
DyStruc-TDG generator with Auto-JPAT 

Java™ SE 

Development Kit 8 

(JDK 8) 

A compiler to compile and run Java program 

(program schema and students’ programming 

solutions 

mysql-connector-

java-5.1.19-bin.jar 

JDBC Driver for MySQL (Connector/J) that 

translates JDBC calls into standard protocol 

used by MySQL 

jstl-1.2.jar JavaServer Pages Standard Tag Library 

(JSTL) which provides easier standard tags 

for writing JSP codes 

javaparser-core-
2.3.0.jar 

An external Java library used in DyStruc-
TDG generator for test data generation. 

commons-exec-

1.3.jar 

An external Java library used to assist the 

execution of schema solution and students’ 
programming exercises 

Java & JavaServer 

Pages (JSP) 

Language or technology behind the 

interaction of Auto-JPAT webpages 

MySQL 5.0.11 An open source database management system 
which was used to manage Auto-JPAT 

database 

SQLyog 

Community v12.2.2 

A MySQL client for administration and 

management of Auto-JPAT database 

Apache Tomcat 7 A software used to deploy Auto-JPAT tool 

 
For this study, unit testing and integration testing 
were conducted on Auto-JPAT. Unit testing focuses 
on testing the functionalities of Auto-JPAT by 
following step-by-step of procedures listed as a set 
of test scripts developed for all available functions 
as listed in Table 1. On the other hand, the 
integration testing (Leung and White, 1990) focuses 
on testing all other features and functionalities as 
well as the integration part that embeds the 
generator DyStruc-TDG in order to ensure all those 
features and functionalities work properly in Auto-



Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia   

http://www.kmice.cms.net.my/   309 

JPAT. For this purpose, it involved testing the 
functionalities of DyStruc-TDG and overall 
functionalities of Auto-JPAT with respective 
samples of programming exercises. The sample 
programming exercises comprise of two simple 
programming exercises involving selection and 
repetition (loop) control structurres.. Figure 4 
illustrates the overall architecture of Auto-JPAT. 

The consecutive Figure 6, Figure 7 and Figure 8 
show among the important user graphical interfaces 
for Auto-JPAT based on the main role of users 
(lecturer and student). Based on Figure 6, every 
user either student or lecturer must log into Auto-
JPAT with a valid username and password before 
accessing other features or functions in Auto-JPAT. 
Dashboard interface is shown each time a user 
successfully logged into Auto-JPAT. Every Auto-
JPAT user is given access to manage his/her user 
profile settings such as profile picture and account 
password. This interface can be accessed by 
selecting ‘Profile’ from navigation bar menu or 
clicking ‘My Profile’ button in the Dashboard 
interface. Students and lecturers may view the list 
of courses that have been enrolled in a particular 
semester via “Enrolled Course List Interface”. 
Course Planner interface will display a course 
planner for selected course group in form of weekly 
record. 

 
Figure 4. Overall Architecture of Auto-JPAT 

Based on Figure 7, it shows the interfaces that 
students can access.  The students only can view the 
assignment created by the lecturers. While viewing 
the assignment, they can either submit the 
assignment solution if they have not yet submitted 
via ‘Upload’ button or initiate assessment process 
via ‘Assess’ button after they have successfully 
submitted their solutions. The system does not 

allow resubmission once assessment process is 
starting, so they are given a confirmation message 
either to continue the process or not. Once the 
assessment was done, the students can see their 
assessment result in ‘Assessment Details’ tab. 

 

 
Login Interface 

 

 
Dashboard Interface 

 

 
User Profile Interface 

 
Enrolled Course List Interface 

 
Course Planner Interface 

Figure 5. General Interfaces for all users 

 

 
Learning Material Interface for Lecturer 

(Pop-up Dialog for Creating New 

Learning Material) 

 

 
Assignment Interface for Lecturer 

(Dialog for Create New Assignment) 

 
Assignment Interface for Lecturer (View 

Assignment) 

 
Assignment Interface for Lecturer 

(Prepare/Edit Test Data) 

 
Assignment Interface for Lecturer (View Submission List) 

Figure 6. Interfaces for lecturers 

 



Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia   

http://www.kmice.cms.net.my/   310 

 

 
Assignment Interface for 

Student (Submit Assignment) 

 

 
Assignment Interface for Student 

(Assess Assignment) 

 
Example of Assessment Output for Student 

Figure 7. Interfaces for students 

V CONCLUSION AND FUTURE WORK 
This paper has presented a tool for conducting a 
dynamic structural testing of a program executed in 
APA which integrates DyStruc-TDG, a test data 
generation method that have recently developed. 
This tool is expected to assist lecturers who have 
been teaching introductory programming courses in 
conducting a dynamic-structural testing on 
students’ programming exercises. It also gives a 
systematic and consistent way of deriving test data 
among different individual lecturers regardless of 
having a particular knowledge of test cases design. 
In addition, this feature benefits the lecturers in 
terms of reducing their workloads, including the 
time spent for assessing programming exercises and 
averting them to construe the critical aspects of 
devising the suitable test cases to judge the 
correctness quality of students’ programs. In this 
paper, it only highlights the design and 
implementation of the developed Auto-JPAT. As 
sub-sequence to a completion of the tool 
dvelopment, a users’ experience evaluation was 
conducted from the contexts of users’ perception 
and End-User Computing Satisfaction (EUCS). 

As for the future work, there are some possible 
recommendations that can be realized especially in 
deriving the test cases design (test data). Currently, 
Auto-JPAT is only capable of performing dynamic-
structural testing on programming solutions that 
involve only one specific class as its scope 
particularly for an introductory programming 
course. Generally, students of this course will be  
given with programming exercises that focus on 
one specific class only. However, it would be more 
beneficial if the tool could be extending by dealing 
with multiple classes. With this extended capability, 
the lecturers do not have to limit the possible 
solution that can be provided by the students. 

Another possible recommendation is to include a 
negative testing criteria. DyStruc-TDG method that 
is integrated in Auto-JPAT does not include the 

negative testing while generating the test data. 
Negative testing refers to the testing of invalid data 
(input) against the program. This study does not 
concern of this issue as it is not critical in domain of 
APA since positive testing is sufficient to cover the 
required testing in APA. However, an ideal testing 
can be realized with the inclusion of the negative 
testing criteria. 

ACKNOWLEDGEMENT 

The authors acknowledge Ministry Higher 
Education FRGS Fund (Code SO: 12821) of 
Universiti Utara Malaysia for supporting this work. 

REFERENCES 

Al Shamsi, F., & Elnagar, A. (2012). An intelligent assessment tool for 

students’ Java submissions in introductory programming courses, 4(1), 
pp. 59-69. 

Auffarth, B., López-Sánchez, M., Campos i Miralles, J., & Puig, A. (2008). 

System for automated assistance in correction of programming 

exercises (SAC). In International Congress University Teaching and 

Innovation (CIDUI), Lleida, Spain, pp. 104-113. 

Blumenstein, M., Green, S., Nguyen, A. and Muthukkumarasamy, V. 

(2004). GAME: A Generic Automated Marking Environment for 

Programming Assessment, Proceedings of the International Conference 
on Information Technology: Coding and Computing (ITCC’04), Las 

Vegas, Nevada, Vol. 1, pp. 212-216.. 

Douce, C., Livingstone, D., & Orwell, J. (2005). Automatic test-based 

assessment of programming: A review. Journal on Educational 

Resources in Computing (JERIC), 5(3), 4. 

Dow, S. (2011). How prototyping practices affect design 

results. Interactions, 18(3), 54-59. 

Edvardsson, J. (1999). A survey on automatic test data generation. 
In Proceedings of the 2nd Conference on Computer Science and 

Engineering , pp. 21-28. 

Ihantola, P. (2006). Creating and Visualizing Test Data from Programming 

Exercises. Informatics in education, 6(1), 81-102. 

Ihantola, P., Ahoniemi, T., and Karavirta, V. (2010). Review of Recent 

Systems for Automatic Assessment of Programming Assignments, 

Proceedings of the 10
th

 Koli Calling International Conference on 
Computing Education Research, Koli, Finland, pp. 86-93. 

Jackson, D. (2000). A semi-automated approach to online assessment. ACM 

SIGCSE Bulletin, 32(3), 164-167. 

Kitaya, H. & Inoue, U. (2016). An online automated scoring system for Java 

programming assignments. International Journal of Information and 

Education Technology, 6(4), 275. 

Korel, B. (1990). Automated software test data generation. IEEE 

Transactions on Software Engineering, 16(8), 870-879. 
Latiu, G. I., Cret, O. A. & Vacariu, L. (2012). Automatic test data 

generation for software path testing using evolutionary algorithms. 

Proceedings of Third International Conference on Emerging Intelligent 

Data and Web Technologies, pp. 1-8.  

Leung, H. K. & White, L. (1990). A study of integration testing and 

software regression at the integration level. Proceedings of a 

Conference on Software Maintenance, pp. 290-301.  

Liang, Y., Liu, Q., Xu, J. & Wang, D. (2009). The recent development of 
automated programming assessment. Proceedings of  International 

Conference on  Computational intelligence and software engineering, 

pp. 1-5. 

Lim, K. S., Lim, J. S., & Heinrichs, J. H. (2008). Validating an End-User 

Computing Satisfaction Instrument: a confirmatory factor analysis 

approach using international data. Journal of International Technology 

and Information Management, 17(2), 6. 
Monpratarnchai, S., Fujiwara, S., Katayama, A. & Uehara, T. (2014). 

Automated testing for Java programs using JPF-based test case 

generation. ACM SIGSOFT Software Engineering Notes, 39(1), 1-5. 

Nunome, A., Hirata, H., Fukuzawa, M. & Shibayama, K. (2010). 

Development of an e-learning back-end system for code assessment in 

elementary programming practice. Proceedings of the 38th annual 

ACM SIGUCCS fall conference: navigation and discovery, pp. 181-

186.  
Queirós, R. A. P. & Leal, J. P. (2012). PETCHA: a programming exercises 

teaching assistant. Proceedings of the 17th ACM annual conference on 

Innovation and technology in computer science education, pp. 192-197. 



Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia   

http://www.kmice.cms.net.my/   311 

Rahman, K. A. & Nordin, M. J. (2007). A Review on the Static Analysis 

Approach in the Automated Programming Assessment Systems, 

Proceedings of National Conference on Programming, Kuala Lumpur, 

Malaysia, pp. 10-21. 
Reid, S. (2005). The Art of Software Testing, Glenford J. Myers. Revised 

and updated by Tom Badgett and Todd M. Thomas, with Corey 

Sandler. John Wiley and Sons, New Jersey, USA, 2004. ISBN: 0‐
471‐ 46912‐ 2, pp 234. Software Testing, Verification and 

Reliability, 15(2), 136-137. 

Romli, R., Sulaiman, S., & Zamli, K. Z. (2015). Improving the reliability 

and validity of test data adequacy in programming assessments. Jurnal 
Teknologi, 77(9), 149–163. 

Romli, R., Sulaiman, S., & Zamli, K. Z. (2014). Test data generation 

framework for Automatic Programming Assessment. Proceedings 

of 8th Malaysian Software Engineering Conference, pp. 84-89. 

Romli, R., Sulaiman, S., & Zamli, K. Z. (2010). Automatic programming 

assessment and test data generation a review on its approaches. 

In International Symposium in Information Technology (ITSim), 2010, 

Vol. 3, pp. 1186-1192. 

Saikkonen, R., Malmi, L., & Korhonen, A. (2001). Fully automatic 

assessment of programming exercises. In ACM Sigcse Bulletin, Vol. 
33, No. 3, pp. 133-136. 

Sherman, M., Bassil, S., Lipman, D., Tuck, N., & Martin, F. (2013). Impact 

of auto-grading on an introductory computing course. Journal of 

Computing Sciences in Colleges, 28(6), 69-75. 

Tahbildar, H., & Kalita, B. (2011). Automated software test data generation: 

direction of research. International Journal of Computer Science and 

Engineering Survey, 2(1), 99-120. 
Tillmann, N., De Halleux, J., Xie, T., Gulwani, S., & Bishop, J. (2013). 

Teaching and Learning Programming and Software Engineering via 

Interactive Gaming. Proceedings of the 2013 International Conference 

on Software Engineering, pp. 1117-1126.

 


