
Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia   

http://www.kmice.cms.net.my/   229 

Impact of Software Refactoring on Software Quality in the Industrial 

Environment: A Review of Empirical Studies 

Abdullah Almogahed
1,2

, Mazni Omar
1
 and Nur Haryani Zakaria

1
 

1Universiti Utara Malaysia, Malaysia, {mazni@uum.edu.my, haryani@uum.edu.my}  
2Taiz University, Yemen, {abdullah.almogahed@outlook.com}  

 

ABSTRACT 

The main aim of software refactoring is to improve 

the software quality by changing the internal 

structure of software systems with the maintenance 

of their external behaviour. Previous empirical 

studies have assessed the impact of refactoring on 

software quality, in terms of internal and external 

quality attributes in both academic and industrial 

environments. It is broadly believed that software 

quality can be improved by refactoring. However, 

several studies claimed that the impact of 

refactoring on software quality may be positive, 

negative or no effect. This paper presents a review 

regarding empirical studies on the impact of 

software refactoring on software quality in the 

industrial environment. The main objective of this 

paper is to investigate impact software refactoring 

on software quality in the industrial environment in 

order to identify any consensus or contradictions 

among the researchers regarding the application of 

refactoring in this environment; and to identify the 

applied refactoring techniques, internal and external 

quality attributes that have been examined. The 

results showed that refactoring positively affects 

software quality in the industrial environment. 

Additionally, several gaps have been identified that 

need more investigation in the industrial 

environment. 

 

Keywords: Empirical study, software refactoring, 

software quality, literature review. 

 

I INTRODUCTION 
One of the characteristics of large-scale software 
systems is the high complexity that makes the 
maintenance of these systems become difficult. In 
fact, it has been reported that the cost due to 
evolution activities and maintenance for a software 
system is a more than 80% of the total cost of the 
software system (Ouni, Kessentini, Sahraoui, Inoue, 
& Deb, 2016). Refactoring is one of the most trusted 
techniques widely used to facilitate the maintenance 
tasks (Ouni et al., 2016). In the last two decades, 
software refactoring has received extensive interest 
from researchers and has become an essential 
portion of the software development process 
(Bashir, Lee, Yung, Alam, & Ahmad, 2017). 
Refactoring was defined by Fowler as a process 

aiming to improve the internal design quality of a 
software system without altering its external 
behaviour (Fowler, Beck, Brant, Opdyke, & 
Roberts, 2002). In 1999, Fowler identified a 
catalogue of 72 refactoring techniques (Fowler et 
al., 2002). Fowler’s definition refers to the existence 
of a relationship between the refactoring techniques 
and internal quality factors (Bavota, De Lucia, Di 
Penta, Oliveto, & Palomba, 2015).  

Software quality attributes have been classified into 
two categories, which are internal and external 
attributes (Morasca, 2009). Inheritance, coupling, 
size, cohesion, and complexity are examples of 
internal quality attributes that are able to be 
measured by code artifacts only, while reusability, 
fault-proneness, understandability, and 
maintainability are examples of the external 
software attributes that are not able to be measured 
directly based on code artifacts (Fenton & Bieman, 
2014). Models and formulas were proposed by 
researchers to use the internal quality attributes as 
instruments to estimate the external quality 
attributes (Jabangwe, Börstler, Šmite, & Wohlin, 
2015). Consequently, it can be deduced that both 
internal and external quality attributes are affected 
by refactoring (Bashir et al., 2017). In other words, 
improvement in internal quality attributes by 
refactoring indirectly has an effect on relevant 
external quality attributes.  

This paper aims to investigate the relation between 
the software refactoring and the software quality in 
the industrial environment through a review. The 
industry environments mean those empirical studies 
that have been investigated the impact of the 
refactoring on the quality of real software systems at 
companies where the developers performed the 
refactoring process. The industrial environment was 
chosen because the industry setting involves real 
systems with different kinds of costs and risks, as 
well as the execution of the refactoring process by 
experts. 

The objectives of this paper are to present a review 
that: 

 Identifies the state-of-the-art in empirical 
studies that investigate the refactoring 
impact on software quality in the industrial 



Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia   

http://www.kmice.cms.net.my/   230 

environment and analyses the relationship 
between refactoring and software quality. 

 Identifies the refactoring techniques that 
have been applied, internal and external 
quality attributes that have been 
investigated in the industrial environment, 
as well as the research gaps with regard to 
them. 

The results of this review are expected to: 

 Provide a summary for software developers 
to distinguish which quality attributes have 
been improved by refactoring to help them 
make suitable decisions when applying 
refactoring.    

 Identify the research gaps that need more 
investigations to provide a better 
understanding of the refactoring impact on 
software quality. 

In Section II, the literature review is described. 
Section III reports the results and discussion of this 
review, followed by the conclusion in Section IV. 

II LITERATURE REVIEW 
In the literature, the refactoring impact on the 
internal and external software quality attributes has 
been studied and many empirical studies have been 
investigated through academic and industrial 
environments to prove/validate or 
unproven/invalidate Fowler's claim that states the 
software quality improves through the application of 
the refactoring techniques proposed by him. 

According to Kim, Zimmermann, and Nagappan 
(2014), Kim et al (2014), there are few studies that 
investigated impact software refactoring on software 
quality in the industrial environment. Therefore, 
twenty studies were found in this review. 

This review found several empirical studies such as 
Kim et al (2014), Morasca (2009), and Szőke, Nagy, 
Ferenc, and Gyimóthy (2014)  that validated and 
supported Fowler's claim in which refactoring 
improves software quality. In contrast, several 
researchers argued that the relation between 
refactoring and quality is not clear (e.g., Alshayeb, 
2011; Bavota et al., 2015; Fontana & Spinelli, 2011; 
Soetens & Demeyer, 2010). They claimed that the 
impact of refactoring on software quality may be 
positive, negative or no effect.  

Table 1 reports the finding and limitation of each 
study. 

 

 

 

Table 1. A Summary of Previous Empirical Studies of Impact 
Refactoring on Software Quality 

Authors Findings Limitations 

and gaps 

Geppert, 

Mockus, & 

Rossler 

(2005) 

Refactoring has improved 

the changeability of the 

investigated legacy system 

where change effort and 

client report defects were 

reduced. 

A number of 

non-standard 

refactoring 

techniques 

were applied. 

Refactoring 

was only 

limited to 

changeability 

 

Moser, 

Sillitti, 

Abrahamss

on, & 

Succi 

(2006) 

Software reliability was 

improved by applying 

refactoring through the 

development of a project 

for mobile applications by 

four developers. 

The developer 

team was 

heterogeneous, 

one expert and 

three juniors, 

and the results 

could be 

seriously 

influenced. 

 

Moser, 

Abrahamss

on, 

Pedrycz, 

Sillitti, & 

Succi 

(2008) 

Refactoring helped to 

improve cohesion, 

coupling, complexity, 

maintenance, and team 

productivity. They used the 

same case study in their 

previous work (Moser et 

al., 2006). 

 

To generalise 

the results, an 

additional 

investigation 

was needed. 

Gatrell, 

Counsell, 

& Hall 

(2009) 

The result of applying 15 

refactoring techniques for 

the production classes and 

test classes is similar, 

which means refactoring 

improves quality. 

 

The findings 

indicated 

improving the 

quality in 

general 

Ghaith & Ó 

Cinnéide 

(2012) 

The results indicated that 

the impact of 14 refactoring 

techniques on the actual 

improvement in the security 

metrics was 15.5%. 

Additional 

tests with 

larger systems 

were needed to 

validate and 

generate the 

findings. 

 

Kim et al. 

(2014) 

The findings showed that 

the applied refactoring 

techniques improved the 

quality in terms of 

maintainability, readability, 

modularity, performance, 

testability, bug reduction, 

code size decrease, 

duplicate code removal, 

easy addition of new 

features, and deployment 

time decrease. 

There were a 

few studies 

that evaluated 

the benefits of 

refactoring 

empirically. It 

was 

recommended 

to conduct 

more 

investigations. 



Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia   

http://www.kmice.cms.net.my/   231 

Szőke et al. 

(2014) 

The findings revealed that 

the refactoring process was 

optimised (priority and 

investments) by developers 

to totally improve the 

quality of the five 

investigated systems. 

The impact of 

refactoring on 

the quality was 

investigated in 

general (e.g. 

they did not 

identify the 

refactoring 

techniques or 

quality 

attributes). 

 

Dibble & 

Gestwicki 

(2013) 

The findings showed that 

the manual refactoring 

significantly improved the 

readability and 

maintainability better than 

ReSharper tool. 

 

 This study 

limited only to 

two external 

quality 

attributes 

Szoke, 

Antal, 

Nagy, 

Ferenc, & 

Gyimothy 

(2014) 

It was found that applying 

only one refactoring 

technique may make 

several improvements in 

the quality or sometimes 

deteriorate it, but when 

applying the refactoring 

techniques in blocks, it can 

significantly improve the 

quality. 

 

 This study 

only 

investigated 

the internal 

quality 

attributes in 

general. 

Gatrell &  

Counsell 

(2015) 

The results indicated that 

fault-prone and change-

proneness was reduced 

significantly in the 

refactored classes. 

 

One system 

was utilised 

for the 

investigation. 

Therefore, 

there was 

doubt to 

generalise 

these results. 

 

Szőke, 

Antal, 

Nagy, 

Ferenc, & 

Gyimóthy 

(2017) 

The applied refactoring 

techniques improved 

maintainability. They 

confirmed the findings in 

their previous study (Szoke, 

Antal, Nagy, Ferenc, & 

Gyimothy, 2014). 

 

They only 

investigated a 

set of 

refactoring 

commits. 

Wahler, 

Drofenik, 

& Snipes 

(2017) 

The results showed that 

maintainability was 

improved by refactoring 

that led to the decrease of 

duplicate codes. 

They 

investigated 

maintainability 

from the 

duplicate code 

perspective 

only. 

Kolb, 

Muthig, 

Patzke, & 

Yamauchi 

(2005) 

The results showed that 

refactoring improved the 

maintainability and 

reusability of IMH 

components. 

They did not 

identify the 

applied 

refactoring 

techniques. 

Kessentini, 

Dea, & 

Ouni 

(2017) 

The findings showed 

important improvements 

regarding recommended 

refactoring techniques. 

Four refactoring techniques 

were randomly generated. 

 

 The software 

quality 

attributes were 

not mentioned. 

Kim, 

Zimmerma

nn, & 

Nagappan 

(2012) 

The results confirmed that 

refactoring had benefits in 

terms of reducing post-

release defects and the 

number of dependencies 

between inter-modules. 

 

 More 

investigations 

were needed in 

the industrial 

setting. 

Ouni et al. 

(2016) 

The findings showed that 

reusability, flexibility, 

understandability, and 

effectiveness were 

improved by the search-

based approach. 

 

The 

refactoring 

techniques 

were not 

identified. 

Lin, Peng, 

Cai,Dig, 

Zheng, & 

Zhao( 

2016) 

The results revealed that the 

proposed refactoring 

navigator had a possibility 

to help, in practice, with 

architectural refactoring. 

Refactoring 

navigator 

supports three 

atomic 

refactoring 

techniques 

only. 

 

Szőke, 

Nagy, 

Hegedűs, 

Ferenc, & 

Gyimóthy 

(2015) 

 

The impact of semi-

automatic refactoring on 

maintainability through four 

large-scale industrial 

systems belonging to four 

companies was 

investigated. Three 

companies achieved in 

improving maintainability. 

The study was 

limited to 

maintainability 

only. 

Ammerlaan

, Veninga, 

& Zaidman 

(2015) 

They evaluated whether 

clean code refactoring 

improves the productivity 

of developers in terms of 

understandability. They 

observed that improving in 

understandability is not 

always apparent. 

 The study 

focused only 

on 

understandabili

ty. 

Niu, 

Bhowmik, 

Liu, & Niu 

(2014) 

They proposed traceability 

enabled refactoring 

approach targeted at 

satisfying more 

requirements completely. 

The results showed the 

improvement of traceability 

by the approach. 

They only 

measured the 

recommended 

refactoring 

techniques 

qualitatively. 

III RESULTS AND DISCUSSION 
In this section, the analysis of the results obtained in 
Table 1 from the reviewed studies is presented. 
Referring to Table 1, all the collected results 
confirmed that refactoring has a positive impact on 



Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia   

http://www.kmice.cms.net.my/   232 

software quality in general and that it supports 
Fowler's claim that stated refactoring improves 
software quality. Eleven out of twenty studies 
(Gatrell & Counsell, 2015; Geppert et al., 2005; 
Ghaith & Ó Cinnéide, 2012; Moser et al., 2006; 
Szőke et al., 2017; Wahler et al., 2017) focused only 
on investigating the refactoring impact on different 
external quality attributes, namely changeability, 
reusability, security, and maintainability. Only two  
study (Szoke et al., 2014) out of the 20 studies, in 
general, investigated the impact of refactoring on 
the internal quality attributes, namely complexity, 
coupling, cohesion, and size, while five studies 
(Dibble & Gestwicki, 2013; Gatrell et al., 2009; 
Kim et al., 2014; Moser et al., 2008; Szőke et al et 
al., 2014) investigated different internal and external 
attributes. In addition, only nine studies (Gatrell et 
al., 2009; Ghaith & Ó Cinnéide, 2012; Kim et al., 
2014; Szőke et al., 2014) identified the applied 
refactoring techniques. 

On the other hand, this paper identified the 
refactoring techniques that have been applied in the 
empirical studies, the internal and external quality 
attributes that have been investigated. In addition, 
several gaps in the existing studies regarding the 
refactoring techniques, internal and external quality 
attributes have been identified. The following 
paragraphs identify those gaps that need for fill up 
by the researches which are: 

 For the applied refactoring techniques, only 
nine studies determined a certain number 
and type of the applied refactoring 
techniques. For example, 15 out of 72 
refactoring techniques were applied in 
studies by   Gatrell & Counsell (2015); 
Gatrell et al (2009); and Ghaith & Ó 
Cinnéide (2012), while 12 techniques were 
applied by Kim et al. (2014). This number is 
considered small as compared to Fowler's 
catalogue, which involves 72 techniques. 
More investigations for those not studied 
are required. 

 For internal quality attributes, complexity 
and coupling have been investigated twice 
through two different studies, while 
cohesion and size have been examined once 
by two varying studies. Therefore, other 
investigations are required to support the 
current results. Furthermore, to the best of 
the author’s knowledge, there is a lack of 
studies that examine the refactoring impact 
on the inheritance attribute; hence, there is a 
need to explore it. 

 For external quality attributes, only nine 
external attributes have been examined in 
the industry. Maintainability has been 

investigated by six studies and readability 
by two studies. The other seven attributes 
were studied only once by different studies. 
Thus, there is a need to conduct more 
studies on them to confirm the current 
results. In addition, to the best of the 
author’s knowledge, there is a lack of 
studies that investigate the refactoring 
impact on the several external quality 
attributes such as adaptability, analysability, 
comprehensibility, ompleteness, 
effectiveness, flexibility, and extendibility. 
Consequently, there is a need for more 
empirical studies to investigate those 
attributes. 

Generally, it is noted that a few existing studies 
have been conducted in the industrial environment 
because the refactoring process requires the 
changing of the internal structure of a system, 
whereby a company might find it difficult to allow 
the refactoring of its system. However, if a 
researcher is working at a company, it is easier for 
him/her to investigate and conduct refactoring 
periodically for maintainability at a company. For 
example, (Kim et al., 2014) conducted an empirical 
study at Microsoft because they worked there. 
Another difficulty to conduct a research in the 
industry is that the developers believe that 
refactoring entails large risks and costs such as 
producing new bugs or raising complexity (Alam, 
Ahmad, Akhunzada, Nasir, & Khan, 2015; Kim et 
al., 2014; Stroggylos & Spinellis, 2007). 

IV CONCLUSION 
Twenty papers have been reviewed, in which the 
researchers conducted an investigation in an 
industry or close to the industrial environment on 
the impact of software refactoring on software 
quality. This review was conducted based on two 
objectives. The first objective was to analyse and 
understand the refactoring impact on software 
quality in the industrial environment through the 
investigated empirical studies. The second objective 
was to identify the applied refactoring techniques, 
internal and external quality attributes that were 
investigated in the industrial environment.  

All results showed that refactoring had a positive 
effect on the external and internal quality attributes. 
Additionally, eleven studies did not declare the 
applied refactoring techniques, while nine studies 
determined 12 to 15 applied refactoring techniques. 
In addition, nine external quality attributes and four 
internal quality attributes were investigated in these 
studies. These results can help developers in making 
the correct decision regarding the application of 
refactoring, as well as help researchers to identify 
the gaps in the literature. 



Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia   

http://www.kmice.cms.net.my/   233 

In summary, there are two important points. Firstly, 
there is a consensus among researchers on the 
positive impact of refactoring regarding the internal 
and external quality attributes. Secondly, it is clear 
that there is a lack of empirical studies regarding the 
applied refactoring techniques, the internal and 
external software quality, and the relationships 
between them in the industrial environment. 

ACKNOWLEDGMENT 

The authors wish to thank the Universiti Utara 
Malaysia for funding this study under High Impact 
Group Research Grant Scheme (PBIT), S/O project 
code: 12867. 

REFERENCES 

Alam, K. A., Ahmad, R., Akhunzada, A., Nasir, M. H. N. M., & Khan, 

S. U. (2015). Impact analysis and change propagation in service-

oriented enterprises: A systematic review. Information Systems, 
54, 43–73. http://doi.org/10.1016/j.is.2015.06.003 

Alshayeb, M. (2011). The Impact of Refactoring to Patterns on 
Software Quality Attributes. Arabian Journal for Science and 

Engineering, 36(7), 1241–1251. http://doi.org/10.1007/s13369-

011-0111-3 

Ammerlaan, E., Veninga, W., & Zaidman, A. (2015). Old habits die 

hard: Why refactoring for understandability does not give 

immediate benefits. 2015 IEEE 22nd International Conference on 
Software Analysis, Evolution, and Reengineering, SANER 2015 - 

Proceedings, 504–507. 

http://doi.org/10.1109/SANER.2015.7081865 

Bavota, G., De Lucia, A., Di Penta, M., Oliveto, R., & Palomba, F. 

(2015). An experimental investigation on the innate relationship 
between quality and refactoring. Journal of Systems and Software, 

107, 1–14. http://doi.org/10.1016/j.jss.2015.05.024 

Dibble, C., & Gestwicki, P. (2013). Refactoring Code to Increase 
Readability and Maintainability: A Case Study. Journal of 

Chemical Information and Modeling, 53(9), 1689–1699. 

http://doi.org/10.1017/CBO9781107415324.004 

Fenton, N. E., & Pfleeger, S. L. (2014). Software Metrics: A Rigorous 

and Practical Approach. CRC Press (Vol. 2). 
http://doi.org/10.1201/b17461 

Fontana, F. A., & Spinelli, S. (2011). Impact of refactoring on quality 
code evaluation. Proceeding of the 4th Workshop on Refactoring 

Tools - WRT ’11, 37. http://doi.org/10.1145/1984732.1984741 

Gatrell, M., & Counsell, S. (2015). The effect of refactoring on change 
and fault-proneness in commercial C# software. Science of 

Computer Programming, 102, 44–56. 

http://doi.org/10.1016/j.scico.2014.12.002 

Gatrell, M., Counsell, S., & Hall, T. (2009). Empirical Support for Two 

Refactoring Studies Using Commercial C# Software. Proceedings 
of the 13th International Conference on Evaluation and 

Assessment in Software Engineering, (Section 4), 1–10. Retrieved 

from http://dl.acm.org/citation.cfm?id=2227040.2227041 

Geppert, B., Mockus, A., & Rößler, F. (2005). Refactoring for 

changeability: A way to go? Proceedings - International Software 

Metrics Symposium, 2005(Metrics), 105–114. 
http://doi.org/10.1109/METRICS.2005.40 

Ghaith, S., & Ó Cinnéide, M. (2012). Improving Software Security 
Using Search-Based Refactoring. Proceedings of the 4th 

International Symposium on Search Based Software Engineering 

(SSBSE), 121–135. http://doi.org/10.1007/978-3-642-33119-0 

Kessentini, M., Dea, T. J., & Ouni, A. (2017). A Context-based 

Refactoring Recommendation Approach Using Simulated 

Annealing: Two Industrial Case Studies. Proceedings of the 
Genetic and Evolutionary Computation Conference, 1303–1310. 

http://doi.org/10.1145/3071178.3071334 

Kim, M., Zimmermann, T., & Nagappan, N. (2012). A field study of 

refactoring challenges and benefits. Proceedings of the ACM 

SIGSOFT 20th International Symposium on the Foundations of 

Software Engineering - FSE ’12, 1. 

http://doi.org/10.1145/2393596.2393655 

Kim, M., Zimmermann, T., & Nagappan, N. (2014). An Empirical 

Study of RefactoringChallenges and Benefits at Microsoft. IEEE 
Transactions on Software Engineering, 40(7), 633–649. 

http://doi.org/10.1109/TSE.2014.2318734 

Kolb, R., Muthig, D., Patzke, T., & Yamauchi, K. (2005). A case study 
in refactoring a legacy component for reuse in a product line. IEEE 

International Conference on Software Maintenance, ICSM, 2005, 

369–378. http://doi.org/10.1109/ICSM.2005.5 

Lee, S. P. (2017). A methodology for impact evaluation of refactoring 

on external quality attributes of a software design. In 2017 
International Conference on Frontiers of Information Technology 

A. http://doi.org/10.1109/FIT.2017.00040 

Lin, Y., Peng, X., Cai, Y., Dig, D., Zheng, D., & Zhao, W. (2016). 
Interactive and guided architectural refactoring with search-based 

recommendation. Proceedings of the 2016 24th ACM SIGSOFT 

International Symposium on Foundations of Software Engineering 
- FSE 2016, 535–546. http://doi.org/10.1145/2950290.2950317 

Martin Fowler, Kent Beck , John Brant, William Opdyke,  don R. 
(2002). Refactoring: Improving the Design of Existing Code (Vol. 

12). Addison-Wesley Professional. http://doi.org/10.1007/s10071-

009-0219-y 

Morasca, S. (2009). A probability-based approach for measuring 

external attributes of software artifacts. 2009 3rd International 
Symposium on Empirical Software Engineering and Measurement, 

ESEM 2009, 44–55. http://doi.org/10.1109/ESEM.2009.5316048 

Moser, R., Abrahamsson, P., Pedrycz, W., Sillitti, A., & Succi, G. 
(2008). A case study on the impact of refactoring on quality and 

productivity in an agile team. Lecture Notes in Computer Science 

(Including Subseries Lecture Notes in Artificial Intelligence and 
Lecture Notes in Bioinformatics), 5082 LNCS, 252–266. 

http://doi.org/10.1007/978-3-540-85279-7_20 

Moser, R., Sillitti, A., Abrahamsson, P., & Succi, G. (2006). Does 

refactoring improve reusability? Lecture Notes in Computer 

Science (Including Subseries Lecture Notes in Artificial 
Intelligence and Lecture Notes in Bioinformatics), 4039 LNCS, 

287–297. http://doi.org/10.1007/11763864_21 

Niu, N., Bhowmik, T., Liu, H., & Niu, Z. (2014). Traceability-enabled 
refactoring for managing just-in-time requirements. 2014 IEEE 

22nd International Requirements Engineering Conference, RE 

2014 - Proceedings, 133–142. 
http://doi.org/10.1109/RE.2014.6912255 

Ouni, A., Kessentini, M., Sahraoui, H., Inoue, K., & Deb, K. (2016). 
Multi-Criteria Code Refactoring Using Search-Based Software 

Engineering. ACM Transactions on Software Engineering and 

Methodology, 25(3), 1–53. http://doi.org/10.1145/2932631 

Ronald Jabangwe, J., Orstler, urgen B¨, D. ˇ, & Smite, C. W. (2014). 

Empirical evidence on the link between object-oriented measures 

and external quality attributes: a systematic literature review. 
Empirical Software Engineering, 1–54. 

http://doi.org/10.1007/s10664-013-9291-7 

Soetens, Q. D., & Demeyer, S. (2010). Studying the effect of 

refactorings: A complexity metrics perspective. Proceedings - 7th 

International Conference on the Quality of Information and 
Communications Technology, QUATIC 2010, (Section VIII), 313–

318. http://doi.org/10.1109/QUATIC.2010.58 

Stroggylos, K., & Spinellis, D. (2007). Refactoring–Does It Improve 

Software Quality? In In Proceedings of the 5th International 

Workshop on Software Quality (p. 10–). 
http://doi.org/10.1109/WOSQ.2007.11 

Szoke˝, G., Nagy, C., Ferenc, R., & Gyimóthy, T. (2014). A Case 

Study of Refactoring Large-Scale Industrial Systems to E ffi 
ciently Improve Source Code Quality. In In International 

Conference on Computational Science and Its Applications (pp. 

524–540). 

Szoke˝, G., oke, Csaba Nagy, P. H., & us, Rudolf Ferenc,  and T. G. 

(2015). Do Automatic Refactorings Improve Maintainability ? An 
Industrial Case Study. In In Software Maintenance and Evolution 

(ICSME), International Conference on . IEEE. (pp. 429–438). 



Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia   

http://www.kmice.cms.net.my/   234 

Szoke, G., Antal, G., Nagy, C., Ferenc, R., & Gyimothy, T. (2014). 

Bulk fixing coding issues and its effects on software quality: Is it 

worth refactoring? Proceedings - 2014 14th IEEE International 
Working Conference on Source Code Analysis and Manipulation, 

SCAM 2014, 95–104. http://doi.org/10.1109/SCAM.2014.18 

Szőke, G., Antal, G., Nagy, C., Ferenc, R., & Gyimóthy, T. (2017). 

Empirical study on refactoring large-scale industrial systems and 

its effects on maintainability. Journal of Systems and Software, 

129, 107–126. http://doi.org/10.1016/j.jss.2016.08.071 

Wahler, M., Drofenik, U., & Snipes, W. (2017). Improving code 

maintainability: A case study on the impact of refactoring. 

Proceedings - 2016 IEEE International Conference on Software 
Maintenance and Evolution, ICSME 2016, 493–501. 

http://doi.org/10.1109/ICSME.2016.52 

 


