
Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia

http://www.kmice.cms.net.my/ 147

Labeling Schemes to Support Dynamic Updates on XML Trees: A

Technical Review

Aisyah Amin, Su-Cheng Haw, Samini Subramaniam and Emyliana Soong
Multimedia University, Malaysia, {tgaisyah.amin@gmail.com, sucheng@mmu.edu.my, samini.subra@mmu.edu.my,

emyliana.soong@gmail.com}

ABSTRACT

eXtensible Markup Language (XML) are widely

use on World Wide Web (WWW) for data

exchange purpose due to its expressivity and

extensible nature. With the fast growing rate of

data, especially with high updates, it is important to

ensure that the XML is able to cope with frequent

changes with very least affect on the existing

structure. To ensure the structural relationships are

preserved, XML tree is commonly annotated with

labeling scheme. Various labeling schemes

emerged with the intention to ensure that it is

persistent, robust and durable enough to sustain the

re-labeling due to updates. They can be grouped

into four major groups, namely, region encoding,

prefix-based, multiplicative and hybrid. In this

paper, we review on some existing labeling scheme

based on each grouping. Through the review, we

observed that each labeling scheme assign the node

based on their unique identifier, thus, has its

strengths and weaknesses. Finally, we provide some

discussions based on the labeling grouping.

Keywords: XML database, labeling scheme,

dynamic updates, node indexing, structural

relationship.

I INTRODUCTION
Extensible Markup Language (XML) is used to
define data and designated to be self-descriptive. It
is a tag-based syntax; similar to Hypertext Markup
Language (HTML). XML is readable by human and
machine as it uses natural language (Mohammad et
al., 2011). At the same time, relational database is
commonly being used as back-end in various
industry. Nevertheless, due to the data is process
independently of its context, relational database
could not fulfill the market demand specifically in
electronic business. To put it another way, relational
database is simply unsuitable for semi structured
data. As such, it is critical to store and retrieve XML
structure (hierarchical model) via relational database
(tables with rows and columns). The key criterion
for a good mapper is to ensure that the four main
structural relationships, i.e., ancestor-descendant
(AD), parent-child (P-C), sibling and order are
preserved (Dietz et al., 1982; Haw & Lee, 2009;

Subramaniam & Haw, 2014). In order to do so, a
good and effective labeling scheme employed on the
node (also known as node indexing) is essential.

There are numbers of researches done on labeling
scheme (Liu et al., 2013; Fraigniaud & Korman,
2016; Liu & Zhang, 2016; Qin et al., 2017). The
purpose of this paper is to analyze and discuss on
some recent labeling scheme, especially in terms of
the support during dynamic updates (insertion
operation). The main types of insertion happen: (i)
left-most insertion, (ii) right-most insertion, and (iii)
in-between insertion (Xu et al., 2012; Liu et al.,
2013; Liu & Zhang, 2016). Left-most and right-
most insertion are quite straight forward in many
existing approaches. Most of the right-most
insertion does not require relabeling in the nodes
insertion. Nevertheless, due to space constrains, this
paper only reviews the in-between insertion as the
right-most and left-most insertions are straight
forward.

The rest of this paper is organized as follows.
Section 2 review on the four selected labeling
schemes and also some recent works on the research
area, while Section 3 summarizes and discusses on
the advantages and disadvantages of these labeling
schemes.

II REVIEW ON EXISTING LABELING

SCHEME
The four main categories of labeling scheme are
region encoding, prefix-based, multiplicative and
hybrid (Haw & Lee, 2009). A region-based labeling
scheme utilise the tree traversal navigation to assign
label on the nodes to preserve the ordering while
ensuring the structural relationships are preserved
among nodes V-Containment (Xu et al., 2012). Tree
traversal is the process of sequentially visiting each
node in a tree data structure, and can proceed in
different directions: depth-first traversal or breath-
first traversal (Tahraoui et al., 2013). A prefix-based
labeling schemes (Haw & Lee, 2009; Ghaleb and
Mohammed, 2015) is usually the most simple
scheme as it directly encode a node’s parent label as
the prefix of its label.

On the other hand, multiplicative labeling scheme
usually assign label based on some arithmetic
computation to identify the structural relationships
among nodes. A hybrid labeling scheme, however,

Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia

http://www.kmice.cms.net.my/ 148

is composed of some combinations of existing
scheme grouping to balance between one weakness
with the strength of the other group (Aisyah & Haw,
2015).

We have selected to review on one example for each
grouping. These are V-Containment (Xu et al.,
2012), ME (Subramaniam & Haw, 2014), LLS
(Mohammad & Martin, 2010), and DPLS (Liu &
Zhang, 2016). Subsequent section also review some
recent trends on labeling scheme.

SigmodRecord dataset is used as an example of the
review throughout this paper. The partial view of
SigmodRecord Dataset is depicted in Figure 1.

Figure 1. A Sample of SigmodRecord XML Document.

A. V-Containment (Region Encoding)

Xu et al. (2012) proposed V-Containment labels for
region encoding which is based on containment
labeling scheme (Zhang et al., 2001).
Fundamentally, the labeling structure contains
(startV, endV, level), where by startV, endV are two
vectors representing the one-time assignment of
initial labeling pre/post labeling scheme (Dietz et
al., 1982), and level denotes the number of edges
between root nodes to current node. The initial
labeling schemes are assigned based on depth first
traversal to assign the initial node labeling. Figure 2
depicts the V-Containment (and also ME labeling
scheme, which will be covered in Section B).

The authors introduced the idea of granularity sum
(GS) as shown in Algorithm 1 to conduct an
insertion.

Figure 3 shows an insertion of in-between node
label as node D, node E and node F of V-
Containment labeling. In this case, Node D will be
inserted in-between the two nodes of nodes Node X
and Node Y. The start and end should be between
the end of its preceding sibling and the start of its
following siblings. From Algorithm 1, the start and
end of Node D should be (3, 118) (= (2 * 1 + 1, 2 *
39 + 40)) and (2,79) (= (1 + 1, 39 + 40). The start
and end of E should be (3, 119) (= (2 * 3 + 4, 2 *
119 + 159)) and (4, 159) (= (3 + 4, 2 * 39 + 40)).
The range of node D is confined by its parent’s
range. Node F is inserted after node E using
Algorithm 1, the start and end of F should be (10,
397) (= (2*3+4, 2 * 119 + 159)) and (7, 278) (= (3 +
4, 2 * 119 + 159)).

Therefore, V-Containment does support dynamic
updates as it does not require to re-labeling the
nodes.

(0, [1, 1])

(1, [3, 3])

(2, [55, 11])(2, [9, 3])
(2, [21, 7])

(2, [45, 9])
(2, [65, 13])

(3, [715, 11]) (3, [845, 13])
(3, [63, 3]) (3, [105, 5])

(4
,
[1

8
9
,
3
])

(4
,
[3

1
5
,
5
])

(4
,
[4

4
1
,
7
])

(4
,
[5

6
7
,
9
])

(5
,
[1

7
0
1
,
3
])

(5
,
[2

8
3
5
,
5
])

(4
,
[1

1
5
5
,
1
1
])

(4
,
[1

3
6
3
,
1
3
])

(4
,
[1

5
7
5
,
1
5
])

(4, [1785, 17])

(5
,
[1

2
4
9
5
,
7
])

(5
,
[1

6
0
6
5
,
9
])

(1, [5, 5])

(2, [15, 5])

(5
,
[1

9
6
3
5
,
1
1
])

(1,1)(1,52),1

(1,2)(1,39),2

(1,3)(1,4),3
(1,41),(1,42),3

(1,40)(1,51),2

(1,5)(1,6),3
(1,7)(1,38),3

(1,43),(1,44),3
(1,45),(1,50),3

(1,8)(1,21),4

(1
,1

5
),
(1

,2
0
),
5

(1
,1

1
),
(1

,1
2
),
5

(1
,1

3
),
(1

,1
4
),
5

(1,22),(1,37),4

(1
,2

3
),
(1

,2
4
),
5

(1
,2

5
),
(1

,2
6
),
5

(1
,2

7
),
(1

,2
8
),
5

(1,29),(1,36),5

(1
,1

6
),
(1

,1
7
),
6

(1
,1

8
),
(1

,1
8
),
6

(1
,3

0
),
(1

,3
1
),
6

(1
,3

2
),
(1

,3
3
),
6

(1,46),(1,47),4
(1,48),(1,49),4

(1
,3

4
),
(1

,3
5
),
6

(1
,9

)(
1
,1

0
),
5

ME Labeling: (0, [1, 1])

V-Containment: (1,1)(1,52),1

 Figure 2. Sigmod Dataset Annotated with V-Containment and ME

Labeling

Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia

http://www.kmice.cms.net.my/ 149

(0, [1, 1])

Node X

(1, [3, 3])

(2, [55, 11])(2, [9, 3]) (2, [21, 7])
(2, [45, 9])

Node Y

(1, [5, 5])

(2, [15, 5])

(1,1)(1,52),1

(1,2)(1,39),2

(1,3)(1,4),3
(1,41),(1,42),3

(1,40)(1,51),2

(1,5)(1,6),3 (1,7)(1,38),3
(1,43),(1,44),3

ME Labeling: (0, [1, 1])

V-Containment: (1,1)(1,52),1

Node D

(1,[30,15])

(3,118),(2,79),2

Node E

(3,119),(4,159),2

Node F

(10,397),(7,278),3

 Figure 3. Partial View of SigmodRecord for in-between insertion

using V-Containment and ME Labeling.

B. ME Labeling (Multiplicative)

Multiplicative labeling (ME) uses multiplication
operation on odd numbers to label the XML tree. It
consists of (level, [selflabel, ordinal]), where by
“level represent the node depth of the tree, selflabel
is computed as parent *ordinal (parent is the
selfLabel of parent node, and ordinal is the position
of the current node within its sibling)”
(Subramaniam & Haw, 2014). The root node start as
1. They applied the formula 2n+1 to generate odd
numbers, where n represent the position of a node in
the level. As such, the first node of ordinal at level 1
is 2(1)+1 equal to 3, followed by the second node
with ordinal 5, and the third node with ordinal 7,
and so on.

For in-between insertion of NodeX and NodeY,
where by the selfLabel of NodeX is designated as
selfX and ordinal of NodeX is designated as
ordinalX. Similarly, selfLabel of NodeY is referred
as selfY and ordinal of NodeY is designated as
ordinalY. Presume that NodeD is the newly inserted
node with selfLabel newselfD and ordinal as
newordinalD. The group of newselfD and
newordinalD for the NodeD is as follows:

For instance, Node D is inserted in-between of Node
X (1,[3,3]) and Node Y (1,[5,5]) (see Figure 3), the
group of new label for Node D is shown as below:

As the result, the new label for Node D is (1,
[30,15]). Figure 3 illustrates some in-between
insertion based on ME labeling scheme.

C. Level-based Labeling Scheme (LLS)

(Hybrid)

Level-based labeling scheme (LLS) is a hybrid
labeling scheme based on interval and prefix-based
labeling scheme (Mohammad & Martin, 2010). LLS
labeling structure are assigned as <d.p.s> whereby d
denote the depth of level, p (indicate as PerL) is the
number of node across d level and s is the instance
serial number that recognize nodes between the
same node from the same class. Figure 4 shows the
LLS labeling scheme on the summary tree.

SigmodRecord

issue

volume number articles

article

author

title initPage endPage authors

(1.1.1)

(2.11)

(3.11) (3.21)

(4.11)

(5.11) (5.21) (5.31) (5.41)

(6.11)

(3.31)

*

* * *

*

* * * *

*

Figure 4. LLS Labeling Scheme summary tree.

On dynamic update, the relabeling of nodes only
effected on the labels next to inserted nodes. For
instance, Figure 5 shows an insertion summary tree
of LLS labeling scheme (and also, an insertion of
DPLS which will be covered in Section D).
Whereas, Figure 7 shows an insertion of node label
‘Year Publish’. Node label ‘Year Publish’ is
inserted in-between node labels ‘issue’ on the right
and node labels ‘issue’ on the left. Node label ‘Year
Publish’ is 2.21.1 as it is not from the same class of
node labels ‘issue’. Follow by the insertion of label
node ‘Publish Date’ is 3.41.1 and label node
‘Location (pagination)’ is 3.51.1. However, in this
case, these entire three inserted nodes are not from
among the same class. Thus, the relabeling of nodes
does not require. An illustration of LLS labeling
scheme (and also DPLS, which will be covered in
Section D) is shown in Figure 6.

The labeling structures of LLS are explained in the
following two definitions.

“Definition 1: A tag path t for a node v is a
sequence of tags, l1. l2. … . li (i ≥ 1), of the nodes on
the path from the root node to v node, separated by
dots.”

a) newselfD = (selfY)(ordinalX) +
(selfX)(ordinalY)

b) newordinalD = newselfD /parent of
NodeX or NodeY

a) newselfD = (5)(3) + (3)(5)
 = 15 + 15
 = 30
b) newordinalD = 15 / 1
 = 15

Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia

http://www.kmice.cms.net.my/ 150

SigmodRecord

issue

volume number articles

article

author

title initPage endPage authors

(1.1.1)

(2.11.1)

(3.21.1)

(4.11.1)

(5.11.1) (5.21.1) (5.31.1) (5.41.1)

(6.11.1)

(3.31.1)

*

* * *

*

* * * *

*

(2.21.1)

Publication

Date

Location

(pagination)

(3.11.1)
(3.41.1)

(3.51.1)* *

Year Publish

*

Figure 5. In-between insertion on summary tree of LLS Labeling

Scheme.

For instance, the tag path of node <3.31.2> is
SigmodRecord.issue.articles.

“Definition 2: A serial path r for a node v is a
sequence of serial numbers, s1.s2. … .si (i ≥ 1), of the
nodes on the path from the root node to v. For
instance, the serial path of node <3.31.2> is (1.2.3),
which contains the third part of the labels of the
nodes, in the path from the root node to this node.
Note that the d values (the levels) of the components
of a serial path r of a node v, where r = (s1.s2. … .si),
is d = (1,2, … , i), respectively, where i is the level
of v.”

For instance, for node <3.31.2>, the levels of the
component of the serial path (1.2.3) are (1,2, and 3),
respectively.

LLS labeling tree structure can be summarized as in
a group whereby all the same tag path will be shown
at least once. For instance, in this case, node label
issues are <2.11> only will be shown once.
Similarly, node label volume is <3.11>, node label
<3.21>, node label <3.31> and so on. Figure 4
shows how the summary of LLS tree.

However, there is a need in relabeling the node for
dynamic updates. The relabeling of node effect in a
level of the next node inserted. Figure 8 shows in
theoretically nodes that need relabeling. On the
other side, the advantage of LLS labeling is the
labeling tree can be summarized.

DPLS: 1

LLS: (1.1.1)(1.1.1)

(2.11.1)

(2.11.2)

(3.11.1)

(3.21.1) (3.31.1)
(3.31.2)(3.21.2)(3.11.2)

(4.11.1) (4.11.2) (4.11.3) (4.11.4)

(5.11.1) (5.21.1) (5.31.1)

(5.41.1)

(5.11.2) (5.21.2) (5.31.2)

(5.41.2)

(6.11.1)
(6.11.2) (6.11.3) (6.11.4) (6.11.5)

1

1.1

1.1.1
1.2.1

1.2

1.1.2 1.1.3
1.2.2 1.2.3

1.1.3.1

1.1.3.1.1 1.1.3.1.2 1.1.3.1.3

1.1.3.1.4

1.1.3.2

1.1.3.2.1 1.1.3.2.2 1.1.3.2.3

1.1.3.2.4

1.1.3.1.4.1 1.1.3.1.4.2
1.1.3.2.4.1 1.1.3.2.4.2

1.2.3.1 1.2.3.2

1.1.3.2.4.3

Figure 6. SigmodRecord dataset annotated with DPLS and LLS.

DPLS: 1

LLS: (1.1.1)

(1.1.1)

(2.11.1) (2.11.2)

(3.11.1) (3.21.1)

(3.31.1)

(3.31.2)

(3.21.2)(3.11.2)

1

1.1

1.1.1

1.2.1

1.2

1.1.2

1.1.3

1.2.2

1.2.3

(2.21.1)

Node B

1.1(4/2)

(3.51.1)

Node A

1.(3/2)

(3.41.1)

Node C

1.1(5/3)

SigmodRecord

issue issue

volume

volume

number

number

articles

articles

Year

Publish

Publish

date

Location

(pagination)

Figure 7. Partial view of SigmodRecord to show in-between

insertion of DPLS and LLS Labeling Scheme.

Figure 8. LLS Labeling Scheme of dynamic updates.

D. Dynamic Prefix-based Labeling Scheme

(DPLS) (Prefix-based)

Dynamic Prefix-based Labeling Scheme (DPLS)
(Liu & Zhang, 2016) is an example of prefix-based
labeling by extending on Dewey scheme (Tatarinov
et al., 2002). This approach has two stages, whereby

Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia

http://www.kmice.cms.net.my/ 151

the first stage includes constructing the initial DPLS
labeling is assigned based on Dewey scheme,
followed by the next stage is to handle any updates.
The diagram of DPLS initial labeling is shown in
Figure 6.

The second stages support the XML update such as
insertion of labeling nodes. The first insertion of
DPLS is representing as Node A follow by Node B
and Node C. The dashed line denotes the new
inserted nodes. For instance, Node A is inserted
between two nodes with labels 1.1 and 1.2 and its
label is 1.(3/2) which equals to 1.((1+2)/(1 + 1)).
Node B and node C is a child of node A. The label
of Node B is inserted between two nodes with labels
1.1.3 and 1.2.1 is 1.1(4/2) which equals to
1.1.((3+1)/(1+1)). Similarly, Node C is inserted after
node B whereas node C is inserted in-between two
nodes with labels 1.1. (4/2) and 1.2.1. Then, the
label of node C is 1.1.(5/3) which equals to 1.1.
((4+1)/(2+1)). Figure 7 shows an insertion of DPLS
in-between the nodes.

As a result, DPLS approaches avoid relabeling
nodes during a dynamic updates occurs.

E. More Recent Related Works on Various

Labeling Scheme

This section reviews some recent related works to
highlight the trends of labeling schemes.

Fu & Meng (2013) proposed Triple-code which
consists of <start, end, parent-id>. Their approach
adopts the interval-based labeling scheme proposed
by Li & Moon (2001) by replacing the ‘level’ tag
with node’s ‘parent-id’, making it straightforward to
obtain parent/child and sibling relationships.

He (2015) proposed prefix-based scheme using
fractions, which he named it as DPESF Encoding.
This labeling scheme is stored in Numeric-Character
format based on the mapping rules as follows: “to

map each digit 𝑛∈𝑁= {0,1,2,3,4,5,6,7,8,9} in the

numerator to a matching character 𝑐 ∈
𝐶={𝐴,𝐵,𝐶,𝐷,𝐸,𝐹,𝐺,𝐻,𝐼,𝐽}”. As such, label with
(12514) is expressed as 𝐵𝐶𝐹14.

On the other hand, Ghaleb & Mohammad (2015)
proposed Dynamic XDAS as an example of hybrid
labeling scheme. Dynamic XDAS uses binary digits
(0 and 1) to indicate the labeling scheme. This
approach support the lack of Level-based labeling
scheme (LLS) that require node relabeling. The
concept of Dynamic XDAS is the extend approach
of Improved Binary String Labeling (IBLS)
(Chemiavsky & Smith, 2010). IBLS uses Dewey ID
techniques of lexical order in labeling the nodes.
However, the size of data took a large storage.

More recently, Gopinathan & Asawa (2017)
proposed an extended Dewey labeling scheme,

which consists of [prefix.ordinal] label to support
Content and Structure Query (CAS) effectively. In
addition, they also proposed new path based
indexing namely, path index (p_index) and path
combined index (pc_index). These indexes were
constructed using B+Tree and HashMap
respectively.

Ahn et al. (2017) proposed to implement repetitive
prime number (Sun & Hwang, 2014) labeling in a
Map Reduce-based algorithm to overcome the
problem of memory insufficient should a massive
XML data is loaded in a single machine. Being in
parallel environment, this allows multiple machines
to compute labels independently.

III DISCUSSION
There are two aspects of labeling schemes, i.e. to
ensure the structural relationships maintained (static
XML) and to be persistent to any changes incurred
during updates (dynamic updates). Thus, selecting
the suitable labeling scheme is crucial. Some factors
to be considered while doing so include (1) to
ensure that the structural relationship is maintained
at all time. In addition to that, (2) the labeling
scheme should be persistent enough to avoid re-
labeling during any updates.

Selecting the most appropriate labeling scheme is
very important. For instance, region encoding and
multiplicative labeling scheme require massive
calculation as the size of XML document growth. In
addition, multiplicative labeling scheme also suffers
from large label sizes because it leaves big gaps,
which may lead to overflow problems (Ahn et al.,
2017). Prefix-based labeling scheme appears to be
the most straight-forward scheme as to determine
the relationship of one node to the other can be done
by checking on the prefix. Nevertheless, the growth
size of some prefix-based labeling schemes are
uncontrollable especially for XML tree with many
levels down. On the other hand, hybrid labeling
schemes have the potential to support faster query
processing by combining the advantages of two or
more labeling schemes (Haw and Amin, 2015).

Table 1 summarizes the advantages and
disadvantages of reviewed labeling schemes.

Table 1. Summarization on Advantages and Disadvantages of
Labeling Scheme

Labeling
scheme

Advantages Disadvantages

V-Containment
(Xu et al., 2012).

Supports
dynamic updates
without
relabeling the
nodes.

The value of inserted
node becomes
bigger.

Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia

http://www.kmice.cms.net.my/ 152

Multiplicative
(Subramaniam
& Haw, 2014).

Structural
relationship of
XML nodes can
be determined
easily.

Supports
dynamic updates
without
relabeling the
nodes.

The new inserted
nodes which has
larger value than the
reserved numbers
will not supported by
dynamic update.

Level-based
labeling scheme
(LLS)
(Mohammad &
Martin, 2010).

The labeling size
is maintained.
LLS are based on
the levels of the
tree.

Need to relabel the
node for dynamic
updates. The
relabeling of node
effect in a level of the
next node inserted.

Dynamic Prefix-
based Labeling
Scheme (DPLS)
(Liu & Zhang,
2016).

Recycle the
deleted node for
the new inserted
nodes.

Require some time in
node insertion as it
uses fraction to the
determine the node
value

IV CONCLUSION AND FUTURE WORK
In this paper, we have reviewed on the four groups
of labeling schemes by showing how some of the
technique works, and highlighted the pros and cons
of the technique employed. To sum up, the
multiplicative scheme may not be a good choice if it
involves huge dataset due to costly computation
time. In most cases, region encoding usually uses
start, and end to labels the nodes which requires
relabeling in nodes insertions. On the other hand,
DPLS and LLS may be a good candidate for
situation where frequent dynamic updates happen.

In our future direction, we intend to propose a
hybrid labeling schemes by extending region
encoding and prefix-based scheme. Using region
encoding, one can easily determine the structural
relationship among the nodes, Nevertheless, this
scheme is not robust enough to support dynamic
updates. On the other hand, prefix-based scheme
appears to be the most straight-forward, and some
technique such as ORDPATH (O’Neil et al., 2004)
and DPLS (Liu & Zhang, 2016) have proven to be
scalable to support dynamic updates. Thus, by
combining the beautiful features of both schemes,
the limitation may be overcome.

REFERENCES

Ahn, J., Im D.H., Lee, T., and Kim, H.G. (2017). A dynamic and
parallel approach for repetitive prime labeling of XML with
MapReduce. The Journal of Supercomputing, 73(2), 810–836.

Chemiavsky, J.C., and Smith, C.H. (2010). A Binary String Approach
for Updates in Dynamic Ordered XML Data. IEEE Transactions
on Knowledge and Data Engineering, 22, 602-607.

Dietz P.F. (1982). Maintaining Order in a Linked List. ACM
Symposium on Theory of Computing, 122-127.

Fu, L., and Meng, X. (2013). Triple Code: An Efficient Labeling
Scheme for Query Answering in XML Data. Web Information
System and Application Conference, 42-47.

Fraigniaud, P., and Korman (2016). A. An Optimal Ancestry Labeling
Scheme with Applications to XML Trees and Universal Posets,
Journal of the ACM, 63 (1), 6:1-6:30.

Ghaleb, T.A., and Mohammed, S. (2015). A Dynamic Labeling
Scheme Based on Logical Operators: A Support for Order-
Sensitive XML Updates. Procedia Computer Science, 57, 1211-
1218.

Gopinathan, D., and Asawa, K. (2017). New Path Based Index
Structure for Processing CAS Queries over XML Database.
Journal of Computing and Information Technology, 25(3), 211–
225.

Haw, S.C., and Amin, A. (2015). Node Indexing in XML Query
Optimization: A Review. Indian Journal of Science and
Technology, 8(32), 1-9.

Haw, S.C., and Lee, C.S. (2009). Node Labeling Schemes in XML
Query Optimization: A Survey and Open Discussion. IETE
Technical Review, 26(2), 89–101.

He, Y. (2015). A Novel Encoding Scheme for XML Document
Update-supporting. International Conference on Advances in
Mechanical Engineering and Industrial Informatics, 1844-1849.

Li, Q. and Moon, B. (2001). Indexing and Querying XML Data for
Regular Path Expressions. Proceedings of the VLDB, 361-370.

Liu, J., Ma, Z.M., and Yan, L. (2013). Efficient labeling scheme for
dynamic XML trees. Information Sciences, 221, 338-354

Liu J., and Zhang X.X. (2016). Dynamic labeling scheme for XML
updates. Knowledge-Based Systems, (106), 135–149.

Mohamad S., Martin P., Powley W. (2011). Relational Universal Index
Structure for Evaluating XML Twig Queries. International
Conference on Communications and Information Technology, 116-
120.

Mohammad S., and Martin P. (2010). LLS: Level-bases Labeling
Scheme for XML Databases. Conference of the Center for
Advanced Studies on Collaborative Research.

O'Neil, P., O'Neil, E., Pal, S', Cseri, I., Schaller, G. (2004).
ORDPATHs: Insert-Friendly XML Node Labels. ACM SIGMOD,
1-6.

Qin, Z., Tang, Y., Tang, F., Xiao, J., Huang, C., and Xu, H. (2017).
Efficient XML query and update processing using a novel prime-
based middle fraction labeling scheme. China Communications,
14(3), 145-157.

Subramaniam S., and Haw S.C. (2014). ME Labeling: A Robust
Hybrid Scheme for Dynamic Update in XML Databases. IEEE
International Symposium on Telecommunication Technologies.

Sun, D.H, and Hwang, S.C. (2014). A labeling methods for keyword
search over large XML documents. Journal of KIISE, 41(9), 699–
706

Tatarinov I., Viglas S., Beyer K., Shanmugasundaram J., Shekita E.J.,
and Zhang C. (2002). Storing and Querying Ordered XML using a
Relational Database System. ACM SIGMOD, 204-15.

Tahraoui, M.A., Pinel-Sauvagnat, K., Laitang, C., Boughanem, M.,
Kheddouci, H., and Ning, L. (2013). A survey on tree matching
and XML retrieval. Computer Science Review, 8, 1-23.

Xu L., Ling T.W., Wu H. (2012). Labeling Dynamic XML Documents:
An Order-Centric Approach. IEEE Trans of Knowledge Data
Engineering, 24(1), 100-113.

Zhang C., Naughton J., DeWitt D., Luo Q., Lohman G. (2001). On
supporting containment queries in relational database management
systems. ACM SIGMOD International Conference on
Management of Data, 425–436.

