
Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia

http://www.kmice.cms.net.my/ 95

A Model for Characterizing Knowledge Utilization in Verifying

Successful Knowledge Transfer

Salfarina Abdullah
1
, Hazlina Hamdan

1
, Marzanah Abdul Jabar

1
 and Sazly Anuar

2

1Universiti Putra Malaysia, Malaysia, {salfarina@upm.edu.my, hazlina@upm.edu.my, marzanah@upm.edu.my}
2Universiti Kuala Lumpur Malaysia France Institute, Malaysia, {sazly@unikl.edu.my}

ABSTRACT

Software architecture development is a creative

process that requires integration of different

knowledge expertise and functionalities hence, open

up wide opportunities for those involved to learn

from each other. Nevertheless, many assertions have

been made about the flow of knowledge transfer

being unclear and abstruse therefore led to failure in

maximizing knowledge transfer benefits. We

respond to this assertions by proposing a model for

characterizing the utilization of knowledge in order

to verify the occurrence of successful knowledge

transfer. The model is derived based on PKAMI, a

strategy we invented that comprises of 5 key steps.

We further presented a simple case study to show

our implementation of the model proposed. The

significance of this research is that the model will be

able to assist all software practitioners to verify their

engagement in knowledge transfer as well as to

better strategize on improving and keep on

producing quality software project deliverables. We

are also aiming at elevating the essence of

knowledge utilization by encouraging those

involved in development to find ways and

opportunities to learn from others’ experiences.

Keywords: knowledge utilization, knowledge

transfer, software architecture development.

I INTRODUCTION
.Software architecture development is where
knowledge integration mostly occurs compared to
other phases in software development life cycle. It is
the encounter of two most highlighted roles for
developing software architecture – the analyst and
software architect teams. Both teams are specialized
in different types of knowledge, background and
capabilities. Although they are assigned with
different job responsibility, they are highly
dependent on each other. Software architect needs
input from the analyst and vice versa to complete
each other’s objective. But certainly the dependency
that exists between them is not only confined to the
need for delivering their tasks but at the same time,
it initiates the insistence to learn about each other’s
expertise, knowledge and experience, thus creating

the opportunity for knowledge transfer (KT)
(Abdullah, S. et al. 2012).

However, having to work under tight budget and
time constraint, these KT opportunities often left
unattended. When knowledge does not flow among
project teams within an organization, resources are
wasted particularly loss of important knowledge
(Porrawatpreyakorn et al. 2009; Polyaninanova, T.
2011). The tendency of reinventing the wheel, and
proposing poor solutions and decisions will
eventually lead to software project failures. Yet,
many claimed to have engaged in KT. KT is deemed
successful only if knowledge transferred is utilized.
Hence, this raises up a question: How can we
actually verify that KT has occured? Therefore the
aims of this paper are: 1) to propose a model for
characterizing the utilization of knowledge in
software architecture development and 2) to elevate
the essence of knowledge utilization as a
determinant to successful knowledge transfer.

II THE LINKAGE BETWEEN

SOFTWARE ARCHITECTURE

DEVELOPMENT, KNOWLEDGE

TRANSFER AND UTILIZATION OF

KNOWLEDGE

A. Software Architecture Development

The definition of software architecture includes all
the usual technical activities associated with design:
understanding requirements and qualities; extracting
architecturally significant requirements; making
choices; synthesizing a solution; exploring
alternatives and validating them (Unphon and
Dittrich, 2010). In software development process,
software architecture is generally a part of
preliminary design in the design phase. It includes
negotiating and balancing of functional and quality
requirements on one hand, and possible solutions on
the other hand. This means requirements
development and software architecture are not
subsequent phases that are more or less strictly
separated, but instead they are heavily intertwined.

There are many reasons describing the importance
of software architecture development in software
development process. Firstly, it is a vehicle for
communication among stakeholders. Software
architecture is a global, often graphic, description
that can be communicated to the customers, end

Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia

http://www.kmice.cms.net.my/ 96

users, designers and so on. By developing scenarios
of anticipated use, relevant quality aspects can be
analyzed and discussed with various stakeholders.
The software architecture also supports
communication during development. Secondly, it
captures early design decisions. In software
architecture, the global structure of the system has
been decided upon, through the explicit assignment
of functionality to components of the architecture.
These early design decisions are important since
their ramifications are felt in all subsequent phases.
It is therefore paramount to assess the quality at the
earliest possible moment. Thirdly, architecture is the
primary carrier of a software system's quality
attributes such as performance or reliability. The
right architecture is the linchpin for software project
accomplishment whereby the wrong one is a recipe
for guaranteed disaster.

B. The Importance of Knowledge Transfer in

Software Architecture Development

From our research perspective, KT is about the
integration of knowledge and experience between
people from various backgrounds and expertise.
This is in line with the knowledge intensive
environment in software architecture development,
which demands such integration. These people need
not only sharing but also learning from each others’
experience to ensure that they can accomplish their
tasks. This is consistent with the empirical evidence
by Unphon and Dittrich (2010), where the
architecture almost always exists as knowledge of
people applied and communicated answering
situated questions and problems.

It seems rightly emphasized to rationalize the
importance of KT since software architecture
development acts as a vehicle for communication
among those who are involved. As a blue print that
describes the whole software/system, it is a
necessity for it to be effectively delivered and
communicated. KT determines this by ensuring that
the software architecture produced is the outcome of
integration of knowledge particularly between the
analysts and software architects. Without KT, the
development of software architecture might be
imprecise and does not provide adequate
information to proceed to the next phase of
development.

C. Knowledge Utilization As A Determinant of

Knowledge Transfer

Henninger (2001) said that the main problem in
knowledge management (KM) is neither capture nor
store knowledge, but use them to support the
execution of current activities. The use of
knowledge or knowledge utilization refers to the
action of making the knowledge useful for the
knowledge receiver to accomplish his goal and

produce the right decision when needed. Knowledge
must be used as the basis for the development of
new knowledge through integration, innovation,
creation, and extension of the existing knowledge
basis and should still be used as a basis for decision
making (Gonzalez and Martins, 2017). This is
particularly true as making the right decision
determines successful SD project. To understand
software development and its practices, it is very
important to not only understand the software but
also appreciate software developers. According to
Paivarinta and Smolander (2014), software
developers must continuously reflect their
knowledge on software development and use and
build local theories of their own and their teams’
actions in developing software. This has shown that
knowledge is indeed inseparable from action. The
practices in software development demand such
knowledge utilization to ensure software developers
able to produce the intended and quality project
deliverables.

There have been many cases however that
demonstrated poor quality of project deliverables in
SD. These include incomplete software requirement
specification, and incorrect design decision. We
believe incapacity to effectively utilized the
knowledge has given major contribution to such
cases. On the other hand, when knowledge is
transferred effectively, the effect will not only
benefit the receiver, but also the environment where
KT occurs. The utilization of knowledge however
does not only influenced by a single element but it
also relies on the knowledge itself, the medium used
for transferring the knowledge, as well as credibility
of the receiver. For our research purpose, the
utilization of knowldge or knowledge utilization is
defined as the action of putting the knowledge
received into use and translating it into useful and
effective process, as well as project deliverables.

The utilization of exchanged knowledge
corresponds to the anticipated effects as one of the
key elements of KT. It signifies the importance of
knowledge utilization as a prime evident of KT
occurrence. Knowledge is taken to be transferred
when learning takes place and when the recipient
understands the intricacies and implications
associated with that knowledge or she can apply it
(Argote 1999; Darr and Kurtzberg 2000).
Davenport and prusak highlight this in their
definition of kt, where unless knowledge is
absorbed, it is not transferred; merely making
knowledge available does not equate to transfer.
Argote et al. (2003) support this argument by
claiming that kt is evident when experience acquired
in one unit affects another. Abou-zeid (2008) shares
similar opinion by stressing that even transmission
and absorption together have no useful value if the

Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia

http://www.kmice.cms.net.my/ 97

new knowledge does not lead to some change in
behavior. In the study by Haas and Hansen (2005),
the extent to which the task-performing unit needs
to learn from others is one of the key characteristics
that are likely to influence whether utilizing the
firm’s knowledge resources enhances or undermines
task performance. With knowledge-integration,
team members work collaboratively in a way that
encourages ongoing, constructive dialogue so that
the valuable resources within the team can be
effectively utilized for team performance (Gardner
et al. 2011).

III THE PROPOSED MODEL FOR

CHARACTERIZING THE

KNOWLEDGE UTILIZATION
Responding to the research question posit in the
beginning, we propose a model for characterizing
the knowledge utilization in order to verify
successful KT. It will also be used to determine the
extent of knowledge use after transferring
completed. Our design strategy consists of the
following 5 steps, which is named ‘PKAMI’:

 Identify the particular software Process
where KT is expected to occur

 Determine the general and specific
Knowledge areas used involved during the
development of the software architecture

 Determine primary and secondary Activites
involved in the development of the software
architecture

 Determine the Medium used in facilitating
the software architecture development
activites

 Construct the questionnaire Items according
to the knowledge utilization scales and
tivities in the software architecture
development.

A scale consists of different stages of knowledge
utilization developed by Knott and Wildavsky
(1980) has been referred and applied by many
researchers with interest in knowledge use (see
Table1.0). The scale has six stages of utilization: 1)
Reception, 2) Cognition, 3) Discussion, 4)
Reference, 5) Adoption, and finally 6) Influence.
Using this scale, knowledge in software
development can be characterized by identifying the
extent of knowledge use. Based on the table below,
the first two stages neither not exactly reflecting the
use of knowledge nor explicitly affecting the
receiver and its environment, therefore they are
categorized as No KT. Stage 3 onwards on the other
hand, implies the position of knowledge into
meaningful use, thus Yes KT.

Table 1. Knowledge Utilization Stages (KUS)

Stage Description

Reception Information is received; within
reach

Cognition The information is read and
understood

Reference The information changes the
way the person views the topic
area or situation

Effort The information influences
action

Adoption The information influences
outcome

Implementation The information becomes
incorporated into practice

Impact The information yields tangible
benefits

Our approach in deriving this model relies on our
knowledge about the first four steps of PKAMI.
Based on that knowledge, we construct the
questionnaire items concerning the possible
application of related knowledge into each possible
step-by-step activities in software architecture
development. It is important to note that the
questionnaire items are developed are strictly based
on the process currently being studied in order to
verify successful KT. Every item is constructed in a
way it can tell where the participant gain the
knowledge from, and how does the knowledge
being put into use to accommodate the activities
involved. This is the part where we start
characterizing the knowledge use.

Figure 1.0 Knowledge Utilization Characterizing
Model

Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia

http://www.kmice.cms.net.my/ 98

V CASE STUDY

In this research, our interest lies in determining the

occurrence of KT as well as to find the extent of

knowledge utilization during software architecture

development among both analyst and software

architect teams. We interviewed 30 respondents

from various expert positions including project

manager, software architect and system analyst

from different software houses and projects (Refer

Table 2.0). All interviews were conducted in

semistructured form according to the participants’

own time and venue preferences. Each session took

about 30 minutes. These respondents claimed to

have been engaged in KT at their workplaces.

Table 2. Demographic Profiles for 30 Respondents

Resp. Job title

Organization

/

location

Role held

KT

under-

standing

Engage-

ment in

KT

1 System

analyst

Government/

Serdang

System

Analyst

Good Yes

2 System

analyst

Government/

Serdang

System

Analyst

Good Yes

3 System

Analyst

Government/

Serdang

System

Analyst

Good Yes

4 Project

Manager

Government/

Serdang

Software

Architect

Very

Well

Yes

5 System

analyst

Government/

Serdang

System

Analyst

Good Yes

6 System

analyst

Government/

Serdang

Software

Architect

Good Yes

7 System

Analyst

Government/

Serdang

System

Analyst

Good Yes

8 Project

Manager

Government/

Serdang

Software

Architect

Very

Well

Yes

9 System

analyst

Government/

Serdang

System

Analyst

Good Yes

10 System
analyst

Government/
Serdang

System
Analyst

Good Yes

11 System

Analyst

Government/

K.Lumpur

System

Analyst

Very

Well

Yes

12 System
analyst

Government/
K.Lumpur

System
Analyst

Good Yes

13 System

analyst

Private/

Sg. Besi

System

Analyst

Good Yes

14 Project
Manager

Private/
Sg. Besi

Software
Architect

Good Yes

15 Project

Manager

Government/

Serdang

Software

Architect

Very

Well

Yes

16 Project

Manager

Private/

Cyberjaya

Software

Architect

Good Yes

17 System

analyst

Private/

Cyberjaya

System

Analyst

Good Yes

18 System
Analyst

Private/
Cyberjaya

System
Analyst

Good Yes

19 Project

Manager

Private/

Cyberjaya

Software

Architect

Very

Well

Yes

20 System
analyst

Government/
K.Lumpur

System
Analyst

Good Yes

21 Project

Manager

Government/

K.Lumpur

System

Analyst

Very

Well

Yes

22 System
Analyst

Private/
K.Lumpur

System
Analyst

Good Yes

23 Project

Manager

Private/

K.Lumpur

Software

Architect

Good Yes

24 Software

architect

Private/

K.Lumpur

Software

Architect

Good Yes

25 Software
architect

Private/
K.Lumpur

Software
Architect

Very
Well

Yes

26 Software

architect

Private/

K.Lumpur

Software

Architect

Good Yes

27 Project
Manager

Private/
Cyberjaya

Software
Architect

Very
Well

Yes

28 Software

Architect

Private/

PetalingJaya

Software

Architect

Very

Well

Yes

29 Software
Architect

Private/
Petaling Jaya

Software
Architect

Good Yes

30 Project

Manager

Private/

Petaling Jaya

Software

Architect

Good Yes

A list of 15 items were presented and used during

the interview sessions. As anticipated, 100% of the

participants agreed to have performed all of the

listed items regarding knowledge utilization (Refer

Table 2.1). This provides evidence that they have

engaged in KT. This is also consistent with the

requirement or prerequisite of successful KT that

emphasizes putting the knowledge into action and

not merely transferring and receiving knowledge.

Table 2.1 Detailed Result

Items

Frequency (and percentage %)

Somehow

agree
Agree

Somehow

agree

Using the knowledge gained from

the mentoring session held prior
to starting the project, we analyze

software requirements.

0
(0%)

28
(93.3%)

2
(6.7%)

We held regular meetings and

discussions for both teams in
order to ensure we understand

business and customer needs
before development begins.

0

(0%)

26

(86.7%)

4

(13.3%)

We capture software

specifications from business
requirements described by the

clients through brainstorming

session.

0

(0%)

21

(70%)

9

(30%)

Using our architectural and

design knowledge, we articulate

and refine architectural
requirements.

11

(36.7%)

18

(60%)

1

(3.3%)

Using our knowledge in software

development methods, we

document the defined

requirements to produce Software

Requirement Specification (SRS).

0

(0%)

27

(90%)

3

(10%)

Through several meetings and

progress reviews, we get input on

needs to evolve and improve the
architecture.

0

(0%)

28

(93.3%)

2

(6.7%)

We create/draw the initial
architecture based on an analysis

of the given requirements.

3

(10%)

24

(80%)

3

(10%)

We often use reference
architecture and make some

adjustments to save time on

architectural decisions.

10

(33.3%)

20

(66.7%)

0

(0%)

Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia

http://www.kmice.cms.net.my/ 99

We make design decisions based

on mutual agreement with the

other team.

4

(13.3%)

18

(60%)

8

(26.7%)

Using our architectural and

design knowledge, we identify
the style and articulate the

principles and key mechanisms of

the architecture partitioning the
system.

9

(30%)

16

(53.3%)

5

(16.7%)

We define how the various
components fit together.

3
(10%)

27
(90%)

0
(0%)

We evaluate the architecture
through various means including

prototyping, reviews, and

assessments.

5

(16.7%)

25

(83.3%)

0

(0%)

We do trade-off analysis on the
design through active discussions

with the business/software

analyst team.

4

(13.3%)

24

(80%)

2

(6.7%)

Using the application domain
knowledge gained from the early

phase of requirement analysis, we

document the domains for which
the system/software will be built.

2
(6.7%)

22
(73.3%)

6
(20%)

We prepare architectural

documents and deliver

presentations to the stakeholders
and other development teams.

0

(0%)

27

(90%)

3

(10%)

Finally, to determine the level of knowledge

utilization from the specified activities in software

architecture development, we mapped every

questionnaire items with the six KUS (Refer Table

2.2 below).

Table 2.2 Mapping of Questionnaire Items With Stages of

Knowledge Utilization

Items

Stages of

Knowledge

Utilization

1. Using the knowledge gained from the

mentoring session held prior to starting the

project, we analyze software requirements.

Effort

2. We held regular meetings and discussions

for both teams in order to ensure we

understand business and customer needs

before development begins.

Effort

3. We capture software specifications from

business requirements described by the

clients through brainstorming session.

Reference

4. Using our architectural and design

knowledge, we articulate and refine

architectural requirements.

Effort

5. Using our knowledge in software

development methods, we document the

defined requirements to produce Software

Requirement Specification (SRS).

Adoption

6. Through several meetings and progress

reviews, we get input on needs to evolve and

improve the architecture.

Adoption

7. We create/draw the initial architecture based

on an analysis of the given requirements.

Adoption

8. We often use reference architecture and

make some adjustments to save time on

architectural decisions.

Implementat

ion

9. We make design decisions based on mutual

agreement with the other team.

Adoption

10. Using our architectural and design

knowledge, we identify the style and

articulate the principles and key mechanisms

of the architecture partitioning the system.

Adoption

11. We define how the various components fit

together.

Action

12. We evaluate the architecture through various

means including prototyping, reviews, and

assessments.

Adoption

13. We often do trade-off analysis on the design

through active discussions with the

business/software analyst team.

Implementat

ion

14. Using the application domain knowledge

gained from the early phase of requirement

analysis, we document the domains for

which the system/software will be built.

Action

15. We prepare architectural documents and

deliver presentations to the stakeholders and

other development teams.

Impact

According to the model proposed, stage 3 onwards
in knowledge utilization indicate the occurrence of
uccessful KT. Hence, we can conclude that all
respondents not only have proven their engagement
in KT but also managed to maximize the benefits
from KT. This result simply suggests that they
really understood what is actually meant by KT.

Recall that we choose to define KT as learning
from the experience of others. It is worth noting
that every activity in the software architecture
development involves collaboration of both analyst
and software architect teams. The task specified for
each activity either requires the application of
knowledge obtained from previous engagement
with other people/team or necessarily demand for
participation from other people/team for their input,
view and agreement on certain issues. This has
therefore strengthened the fact that KT in software
architecting development does not only address the
utilization of knowledge but put the emphasis in the
essentials of learning from others and their
experiences.

VI CONCLUSION

Software architecture development is a creative

process that requires integration of different

knowledge expertise and functionalities hence, open

up wide opportunities for those involved to learn

from each other. Nevertheless, many assertions have

Knowledge Management International Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia

http://www.kmice.cms.net.my/ 100

been made about the flow of knowledge transfer

being unclear and abstruse therefore led to failure in

maximizing KT benefits. Based on the premise that

knowledge is effectively transferred only when it

has been put into use, we believe the right way to

accomplish our intention is by characterizing how

knowledge is utilized during the process. The

utilization of knowldge or knowledge utilization is

defined as the action of putting the knowledge

received into use and translating it into useful and

effective process, as well as project deliverables. We

proposed a model based on PKAMI, and used it to

verify the occurrence of successful KT as well as

finding the extent of knowledge use. We believe it is

an amazing effort that can assist software

practitioners to better strategize on improving

themselves and keep on producing quality software

project deliverables. We are also aiming at elevating

the essence of knowledge utilization to encourage

those involved in development to find ways and

opportunities to learn from others’ experiences.

REFERENCES

Abou-Zeid (2008). Knowledge management and business strategies:
theoretical frameworks and empirical research. IGI Global

Abdullah, S. (2012). Knowledge Transfer Model of Team Capability in
Non-Collocated Sofwtare Architecture Development: A Doctoral
Thesis. University Putra Malaysia, Malaysia.

Argote, L. (1999). Organizational Learning: Creating, Retaining, and
Transferring Knowledge. Norwell, MA: Kluwer.

Argote, L., McEvily, B., and Reagans, R. (2003): “Managing

Knowledge in Organizations: An Integrative Framework and

Review of Emerging Themes”, Management Science, 49(4), 571-

582.

Darr, E. D., and Kurtzberg, T. R. (2000). An Investigation of Partner
Similarity Dimensions on Knowledge Transfer. Organizational

Behavior and Human Decision Processes, 82(1), 28-44.

Gardner, H. K., Gina, F., and Staats, B. R. (2011). Dynamically
Integrating Knowledge in Teams: Transforming Resources into

Performance. Working Paper.

Gonzalez, R. V. D., and Martins, M. F., (2017). Knowledge
Management Process: a theoretical-conceptual research. Gest.
Prod., Sao Carlos, 24(2) 248-265.

Haas, M.R., and Hansen, M.T. (2005). When using knowledge can hurt
performance: the value of organizational capabilities in a
management consulting company. Strategic Management Journal
26(1), 1–24

Henninger, S., (2001), Keynote Address: Organizational Learning in
Dynamic Domains, In: Proceedings of the Learning Software
Organization, 8-16.

Knott, J., and Wildavsky, A. (1980). If Dissemination Is the Solution,
What Is the Problem? Knowledge: Creation, Diffusion,
Utilization, 1:4, pp. 537-578.

Paivarinta, T., and Smolander, K., (2015). Theorizing about software

development practices. Science of Computer Programming, 124-
135.

Polyaninova, T. (2011). Knowledge Management in a Project
Environment: Organisational CT and Project Influences. Vine,
41(3).

Porrawatpreyakorn, N., Quirchmyer, G., and Chutimaskul, W. (2009).
Requirements for a Knowledge Transfer Framework in the Field of
Software Development Process Management for Executive
Information Systems in the Telecommunications Industry. IAIT
2009, CCIS 55, 110–122.

Unphorn, H. and Dittrich, Y. (2010). Software architecture awareness

in long term software product evaluation. The Journal of Systems

and Software, 83.

