

697

Evolution Strategies for Evolving Artificial Neural Networks in an
Arcade Game

Tse Guan Tan 1, Jason Teo 2, Patricia Anthony 3

1,2 Evolutionary Computing Laboratory
Universiti Malaysia Sabah, MALAYSIA

1 tseguantan@gmail.com, 2 jtwteo@ums.edu.my

3 Center of Excellence in Semantic Agents,
Universiti Malaysia Sabah, MALAYSIA

panthony@ums.edu.my

ABSTRACT

The aim of this paper is to use a simple but powerful
evolutionary algorithm called Evolution Strategies
(ES) to evolve the connection weights and biases of
feed-forward artificial neural networks (ANN) and to
examine its learning ability through computational
experiments in a non-deterministic and dynamic
environment, which is the well-known arcade game
called Ms. Pac-man. The resulting algorithm is
referred to as an Evolution Strategies Neural Network
or ESNet. This study is an attempt to create an
autonomous intelligent controller to play the game.
The comparison of ESNet with two random systems,
Random Direction (RandDir) and Random Neural
Network (RandNet) yields promising results.

Keywords
Evolution Strategies, Evolutionary Artificial Neural
Networks, Ms. Pac-man

1.0 INTRODUCTION

Evolutionary algorithms include four main divisions,
which are genetic algorithms, evolution strategies,
evolutionary programming and genetic programming
(Yao, 2002). An evolutionary algorithm naturally
initializes its population randomly where a set of
individuals are created. Subsequently, fitness
evaluation is a process to measure the fitness of each
individual in the population based on a fitness
function. Then, selection is a natural method, whereby
individuals which can generate new offspring are
selected. Normally, this selection can be divided into
two approaches, parent selection and survivor
selection. Parent selection is a method that is used to
choose individuals as parents in the population. New
offspring are produced through crossover, which
inherits information from the parent. The newly
created offspring can then be mutated. The mutation
operation changes a small part of the offspring’s
genetic information. Finally, survivor selection is a
routine to decide the best individuals for the next
generation. The evolutionary algorithm process is
finished once it has achieved the terminating

conditions. An EA can be used successfully in
complex problems, involving features such as
discontinuities, multimodality, disjoint feasible spaces
and noisy function evaluations (Fonseca & Fleming,
1995). Additionally, EAs can be hybridized with
traditional optimization techniques (e.g. linear
programming, non-linear programming, and dynamic
programming) and non-traditional optimization
techniques (e.g. fuzzy logic and ant colony algorithm)
to improve the efficiency of the algorithms in order to
solve the real-world problems.

In this study, the feed-forward artificial neural
network (ANN) is evolved with the Evolution
Strategies (ES) for the computer player to
automatically learn and optimally play the game of
Ms. Pac-man. The proposed algorithm will be referred
to as an Evolution Strategies Neural Network or
ESNet throughout the paper. The ESNet is
benchmarked against the Random Direction (RandDir)
and Random Neural Network (RandNet) in the same
domain. The importance of the proposed algorithm for
decision-making in a dynamic environment is that the
agent will not only be able to make an intelligent
decision like a human player in the computer or video
game, but also that the successful application of these
techniques will be highly beneficial to the real-world
problems, such as in the application of robotics and
other complex systems.

The organization of this paper is as follows. In Section
2, the Ms. Pac-man game as an application domain
will be discussed. The structures of RandDir, RandNet
and ESNet will be explained in Section 3. In Section
4, the benchmarking results and discussions are given.
Finally, conclusions are shown in Section 5.

2.0 MS. PAC-MAN

Ms. Pac-man is a famous maze-based game from
Midway Manufacturing in 1981 as shown in Figure 1.
The objective of Ms. Pac-man is simply to survive as
long as possible, while achieving the highest possible
score. Ms. Pac-man was inherited from Pac-man,
therefore the basic game-play of Ms. Pac-man still

698

mostly remains the same as the original game. The
agent (yellow circle with a ribbon) is controlled by the
player to be moved around the maze in any of the four
directions (up, down, left or right) attempting to eat
the pills and fruits, and to evade the ghosts. There are
four ghosts named Blinky (red colored), Pinky (pink
colored), Inky (blue colored) and Sue (orange colored)
in the game that chase the agent and try to kill it in the
maze. The maze is filled with hundreds of pills (small
dots) and four power pills (large dots. When the agent
eats a power pill, the ghosts will change to become
edible ghosts (dark blue colored), so that the agent can
then chase and gobble down the ghosts to earn some
extra points for a limited period of time. Another good
way to collect extra points is by eating the fruits that
appear twice in every level that bounce around the
maze. The first fruit appears after agent has eaten 64
pills (including power pills) whereas the second fruit
appears after agent has eaten 176 pills. By default, Ms.
Pac-man initially has three lives, however, if the total
score reaches 10000 points, an extra life will be
awarded, while the player loses a life when a ghost
kills the agent. The game will proceed to the next level
when all the pills on the maze had been eaten. As the
levels increase, the degree of speed and difficulty
increase as well, thus making the game more
challenging. The game is considered ended when the
player loses all lives or completes all levels.

Figure 1: The first maze of Ms. Pac-man

3.0 DEVELOPMENT OF EXPERIMENTAL

SYSTEMS

In this research, the feed-forward ANN (Haykin,
2009) with one hidden layer is applied. The
architecture can be briefly described as 5-20-1, with 5
inputs, 20 hidden units and 1 output unit. A log-
sigmoid activation function is used for network units.

The number of evaluations per run is fixed at 500 in
the ESNet, whereas the RandDir and RandNet are
evaluated only once game in a run since both
algorithms did not involve any learning process. The
general parameters are summarized in Table 1. Below
we give a description of the three algorithms,
RandDir, RandNet and ESNet.

2.3 Random Direction (RandDir)

RandDir is a very simple controller, which directs the
Ms. Pacman agent to move in random directions in the
maze. There are 4 directions available to the agent: up,
down, left and right. At each time step or every few
time steps, the algorithm applies a random change to
the agent’s direction.

2.4 Random Neural Network (RandNet)

The structure of the RandNet controller is shown in
Figure 2. This system begins with a randomly
initialized vector of weights and biases for the ANN
from a uniform distribution in the range between -1
and 1, whose output is then used to control the Ms.
Pacman agent.

2.5 Evolution Strategies Neural Network (ESNet)

ES is a simple and fast algorithm was envisaged by
Rechenberg and Schwefel in 1965 as a numerical
optimization technique. The (1+1)-ES for a two
membered ES has been applied to train the ANN by
evolving the weights and biases, called ESNet. In the
initialization phase, the ANN weights and biases are
encoded into a chromosome from uniform distribution
with range [-1, 1] to act as parent and evaluate its
fitness. Subsequently, polynomial mutation operator
was used to create an offspring from the parent and
evaluate its fitness. After that, the offspring and parent
are compared. If the offspring performs better than the
parent, then the parent is replaced by the offspring as
new parent for the next evaluation (generation).
Otherwise the offspring is eliminated and a new
mutated offspring is generated. If parent and offspring
are incomparable, the offspring is compared with set
of previously nondominated individuals in the archive.
Figure 3 shows the flowchart of ESNet.

The fitness function F chosen for maximization is
based on the score obtained in each evaluation as
follows:

∑
=

=
N

n

ScoresPacmanMsF
1

).((1)

where n and N represent the number of lives in a full
game.

699

Table 1: Parameters setting

Parameters Setting
Number of inputs 5
Number of outputs 1
Number of hidden layers 1
Number of hidden neurons 20
Activation function Log-sigmoid
Mutation operator Polynomial mutation
Mutation probability 0.9
Distribution index 20.0
Number of runs 10

Figure 2: The flowchart of RandNet algorithm

4.0 RESULTS AND DISCUSSIONS

Table 2 presents the experimental data in 10
independent runs to compare the performances of
RandDir, RandNet and ESNet.

Table 2: Ms. Pac-man obtained scores.

Run RandDir RandNet ESNet
1 450 700 6350
2 410 720 5700
3 470 670 6680
4 430 260 5920
5 420 200 6020
6 460 650 6270
7 420 420 5960
8 470 560 6420
9 460 900 6500
10 400 490 5930

Mean 439 557 6175

There were significant differences in the scores for
ESNet (Mean = 6175), RandNet (Mean = 557) and
RandDir (Mean = 439). According to the analyzed
results, the performance of ESNet is noticeably better
than that of RandDir and RandNet. Furthermore, it
was shown to be produce relatively higher results
compared with previous studies (Lucas, 2005; Handa,

2008; DeLooze & Viner, 2009). Hence, we have
shown empirical evidence that ESNet can improve the
learning capability of the ANN by evolving their
weights and biases in a dynamic video game setting.

Figure 3: The flowchart of ESNet algorithm

5.0 CONCLUSIONS

ESNet is introduced in this paper to create an
intelligent Ms. Pac-Man agent to play the game. This
proposed algorithm has been tested against RandDir
and RandNet and the results revealed that the ESNet
clearly outperforms both random systems. Overall,
ESNet has been successfully used to optimize the
performance of ANN.

700

ACKNOWLEDGMENT

This research is funded under the ScienceFund project
SCF52-ICT-3/2008 granted by the Ministry of
Science, Technology and Innovation, Malaysia.

REFERENCES

DeLooze, L. L., & Viner, W. R. (2009). Fuzzy Q-

Learning in a Nondeterministic Environment:
Developing an Intelligent Ms. Pac-Man Agent.
In Proc. 2009 IEEE Symposium on
Computational Intelligence and Games, 162-169.

Fonseca, C. M., & Fleming, P. J. (1995). An Overview
of Evolutionary Algorithms in Multiobjective
Optimization. Evolutionary Computation, 3(1),
1-16.

Handa, H. (2008). Constitution of Ms. Pacman Player
with Critical-Situation Learning Mechanism. In
Proc. 4th International Workshop on
Computational Intelligence and Applications, pp.
48-53.

Haykin, S. (2009). Neural Networks and Learning
Machines (3rd ed.): Prentice Hall, 1-46.

Knowles, J. D., & Corne, D. W. (1999). The Pareto
Archived Evolution Strategy: A New Baseline
Algorithm for Pareto Multiobjective
Optimization. In Proc. 1999 Congress on
Evolutionary Computation, pp. 98-105.

Lucas, S. M. (2005). Evolving a Neural Network
Location Evaluator to Play Ms. Pac-Man. In
Proc. IEEE Symposium on Computational
Intelligence and Games, 203-210.

Yao, X. (2002). Evolutionary Optimization: Kluwer
Academic,27

