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ABSTRACT 

 
The aim of this paper is to use a simple but powerful 
evolutionary algorithm called Evolution Strategies 
(ES) to evolve the connection weights and biases of 
feed-forward artificial neural networks (ANN) and to 
examine its learning ability through computational 
experiments in a non-deterministic and dynamic 
environment, which is the well-known arcade game 
called Ms. Pac-man. The resulting algorithm is 
referred to as an Evolution Strategies Neural Network 
or ESNet. This study is an attempt to create an 
autonomous intelligent controller to play the game. 
The comparison of ESNet with two random systems, 
Random Direction (RandDir) and Random Neural 
Network (RandNet) yields promising results.  
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1.0 INTRODUCTION 

Evolutionary algorithms include four main divisions, 
which are genetic algorithms, evolution strategies, 
evolutionary programming and genetic programming 
(Yao, 2002). An evolutionary algorithm naturally 
initializes its population randomly where a set of 
individuals are created. Subsequently, fitness 
evaluation is a process to measure the fitness of each 
individual in the population based on a fitness 
function. Then, selection is a natural method, whereby 
individuals which can generate new offspring are 
selected. Normally, this selection can be divided into 
two approaches, parent selection and survivor 
selection. Parent selection is a method that is used to 
choose individuals as parents in the population. New 
offspring are produced through crossover, which 
inherits information from the parent. The newly 
created offspring can then be mutated. The mutation 
operation changes a small part of the offspring’s 
genetic information. Finally, survivor selection is a 
routine to decide the best individuals for the next 
generation. The evolutionary algorithm process is 
finished once it has achieved the terminating 

conditions. An EA can be used successfully in 
complex problems, involving features such as 
discontinuities, multimodality, disjoint feasible spaces 
and noisy function evaluations (Fonseca & Fleming, 
1995). Additionally, EAs can be hybridized with 
traditional optimization techniques (e.g. linear 
programming, non-linear programming, and dynamic 
programming) and non-traditional optimization 
techniques (e.g. fuzzy logic and ant colony algorithm) 
to improve the efficiency of the algorithms in order to 
solve the real-world problems.  

In this study, the feed-forward artificial neural 
network (ANN) is evolved with the Evolution 
Strategies (ES) for the computer player to 
automatically learn and optimally play the game of 
Ms. Pac-man. The proposed algorithm will be referred 
to as an Evolution Strategies Neural Network or 
ESNet throughout the paper. The ESNet is 
benchmarked against the Random Direction (RandDir) 
and Random Neural Network (RandNet) in the same 
domain. The importance of the proposed algorithm for 
decision-making in a dynamic environment is that the 
agent will not only be able to make an intelligent 
decision like a human player in the computer or video 
game, but also that the successful application of these 
techniques will be highly beneficial to the real-world 
problems, such as in the application of robotics and 
other complex systems. 

The organization of this paper is as follows. In Section 
2, the Ms. Pac-man game as an application domain 
will be discussed. The structures of RandDir, RandNet 
and ESNet will be explained in Section 3. In Section 
4, the benchmarking results and discussions are given. 
Finally, conclusions are shown in Section 5. 
 
2.0 MS. PAC-MAN 

Ms. Pac-man is a famous maze-based game from 
Midway Manufacturing in 1981 as shown in Figure 1. 
The objective of Ms. Pac-man is simply to survive as 
long as possible, while achieving the highest possible 
score. Ms. Pac-man was inherited from Pac-man, 
therefore the basic game-play of Ms. Pac-man still 
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mostly remains the same as the original game. The 
agent (yellow circle with a ribbon) is controlled by the 
player to be moved around the maze in any of the four 
directions (up, down, left or right) attempting to eat 
the pills and fruits, and to evade the ghosts. There are 
four ghosts named Blinky (red colored), Pinky (pink 
colored), Inky (blue colored) and Sue (orange colored) 
in the game that chase the agent and try to kill it in the 
maze. The maze is filled with hundreds of pills (small 
dots) and four power pills (large dots. When the agent 
eats a power pill, the ghosts will change to become 
edible ghosts (dark blue colored), so that the agent can 
then chase and gobble down the ghosts to earn some 
extra points for a limited period of time. Another good 
way to collect extra points is by eating the fruits that 
appear twice in every level that bounce around the 
maze. The first fruit appears after agent has eaten 64 
pills (including power pills) whereas the second fruit 
appears after agent has eaten 176 pills. By default, Ms. 
Pac-man initially has three lives, however, if the total 
score reaches 10000 points, an extra life will be 
awarded, while the player loses a life when a ghost 
kills the agent. The game will proceed to the next level 
when all the pills on the maze had been eaten. As the 
levels increase, the degree of speed and difficulty 
increase as well, thus making the game more 
challenging. The game is considered ended when the 
player loses all lives or completes all levels.  
 

 

Figure 1: The first maze of Ms. Pac-man 

 
3.0 DEVELOPMENT OF EXPERIMENTAL 

SYSTEMS 

In this research, the feed-forward ANN (Haykin, 
2009) with one hidden layer is applied. The 
architecture can be briefly described as 5-20-1, with 5 
inputs, 20 hidden units and 1 output unit. A log-
sigmoid activation function is used for network units. 

The number of evaluations per run is fixed at 500 in 
the ESNet, whereas the RandDir and RandNet are 
evaluated only once game in a run since both 
algorithms did not involve any learning process. The 
general parameters are summarized in Table 1. Below 
we give a description of the three algorithms, 
RandDir, RandNet and ESNet. 
 
2.3 Random Direction (RandDir) 

RandDir is a very simple controller, which directs the 
Ms. Pacman agent to move in random directions in the 
maze. There are 4 directions available to the agent: up, 
down, left and right. At each time step or every few 
time steps, the algorithm applies a random change to 
the agent’s direction. 
 
2.4 Random Neural Network (RandNet) 

The structure of the RandNet controller is shown in 
Figure 2. This system begins with a randomly 
initialized vector of weights and biases for the ANN 
from a uniform distribution in the range between -1 
and 1, whose output is then used to control the Ms. 
Pacman agent. 
 
2.5 Evolution Strategies Neural Network (ESNet) 

ES is a simple and fast algorithm was envisaged by 
Rechenberg and Schwefel in 1965 as a numerical 
optimization technique. The (1+1)-ES for a two 
membered ES has been applied to train the ANN by 
evolving the weights and biases, called ESNet. In the 
initialization phase, the ANN weights and biases are 
encoded into a chromosome from uniform distribution 
with range [-1, 1] to act as parent and evaluate its 
fitness. Subsequently, polynomial mutation operator 
was used to create an offspring from the parent and 
evaluate its fitness. After that, the offspring and parent 
are compared. If the offspring performs better than the 
parent, then the parent is replaced by the offspring as 
new parent for the next evaluation (generation). 
Otherwise the offspring is eliminated and a new 
mutated offspring is generated. If parent and offspring 
are incomparable, the offspring is compared with set 
of previously nondominated individuals in the archive. 
Figure 3 shows the flowchart of ESNet. 

The fitness function F chosen for maximization is 
based on the score obtained in each evaluation as 
follows: 
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where n and N represent the number of lives in a full 
game. 
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Table 1: Parameters setting 
 

Parameters Setting 
Number of inputs 5 
Number of outputs 1 
Number of hidden layers 1 
Number of hidden neurons 20 
Activation function Log-sigmoid 
Mutation operator Polynomial mutation 
Mutation probability 0.9 
Distribution index 20.0 
Number of runs 10
 
 

 

Figure 2: The flowchart of RandNet algorithm 
 
 
4.0 RESULTS AND DISCUSSIONS 

Table 2 presents the experimental data in 10 
independent runs to compare the performances of 
RandDir, RandNet and ESNet.  
 

Table 2: Ms. Pac-man obtained scores. 
 

Run RandDir RandNet ESNet 
1 450 700 6350 
2 410 720 5700 
3 470 670 6680 
4 430 260 5920 
5 420 200 6020 
6 460 650 6270 
7 420 420 5960 
8 470 560 6420 
9 460 900 6500 
10 400 490 5930 

Mean 439 557 6175 
 
There were significant differences in the scores for 
ESNet (Mean = 6175), RandNet (Mean = 557) and 
RandDir (Mean = 439). According to the analyzed 
results, the performance of ESNet is noticeably better 
than that of RandDir and RandNet. Furthermore, it 
was shown to be produce relatively higher results 
compared with previous studies (Lucas, 2005; Handa, 

2008; DeLooze & Viner, 2009). Hence, we have 
shown empirical evidence that ESNet can improve the 
learning capability of the ANN by evolving their 
weights and biases in a dynamic video game setting. 
 
 

 

Figure 3: The flowchart of ESNet algorithm 
 
 
5.0 CONCLUSIONS 

ESNet is introduced in this paper to create an 
intelligent Ms. Pac-Man agent to play the game. This 
proposed algorithm has been tested against RandDir 
and RandNet and the results revealed that the ESNet 
clearly outperforms both random systems. Overall, 
ESNet has been successfully used to optimize the 
performance of ANN.  
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