

671

A Frequent Pattern Mining Algorithm Based on FP-growth without
Generating Tree

Hossein Tohidi1, Hamidah Ibrahim2

Faculty of Computer Science and Information Technology
Universiti Putra Malaysia

Serdang, MALAYSIA
1tohidi.h@gmail.com, 2hamidah@fsktm.upm.edu.my

ABSTRACT

An interesting method to frequent pattern mining
without generating candidate pattern is called
frequent-pattern growth, or simply FP-growth, which
adopts a divide-and-conquer strategy as follows.
First, it compresses the database representing
frequent items into a frequent-pattern tree, or FP-
tree, which retains the itemset association
information. It then divides the compressed database
into a set of conditional databases (a special kind of
projected database), each associated with one
frequent item or pattern fragment, and mines each
such database separately. For a large database,
constructing a large tree in the memory is a time
consuming task and increase the time of execution. In
this paper we introduce an algorithm to generate
frequent patterns without generating a tree and
therefore improve the time complexity and memory
complexity as well. Our algorithm works based on
prime factorization, and is called Frequent Pattern-
Prime Factorization (FPPF).

Keywords
Data Mining, Frequent Pattern Mining, Association
Rule Mining

1.0 INTRODUCTION

Frequent patterns are patterns (such as itemsets,
subsequences, or substructures) that appear in a data
set frequently. For example, a set of items, such as
milk and bread that appear frequently together in a
transaction data set is a frequent itemset. A
subsequence, such as buying first a PC, then a digital
camera, and then a memory card, if it occurs
frequently in a shopping history database, is a
(frequent) sequential pattern. Finding such frequent
patterns plays an essential role in mining
associations, correlations, and many other interesting
relationships among data.

Most of the previous studies adopt an Apriori-like
approach, which is based on the anti-monotone
Apriori heuristic: “If any length k pattern is not

frequent in the database, its length (k + 1) super-
pattern can never be frequent.”

The Apriori candidate generate-and-test method
significantly reduces the size of candidate sets,
leading to good performance gain. However, it
suffers from two nontrivial costs:

i. It may need to generate a huge number of
candidate sets.

ii. It may need to repeatedly scan the database and
check a large set of candidates by pattern
matching.

Can we design a method that mines the complete set
of frequent itemsets without candidate generation?
An interesting method in this attempt is called
frequent-pattern growth, or simply FP-growth, which
adopts a divide-and-conquer strategy as follows.
First, it compresses the database representing
frequent items into a frequent-pattern tree, or FP-tree,
which retains the itemset association information. It
then divides the compressed database into a set of
conditional databases (a special kind of projected
database), each associated with one frequent item or
pattern fragment, and mines each such database
separately.

This study is to design an approach for the frequent
pattern mining without candidate generation which is
efficient and fast even for large database. The most
significant benefit of this approach is low memory
complexity as compared to FP-growth. Our approach
called Frequent Pattern-Prime Factorization (FPPF)
is similar to FP-growth where the least frequent item
is candidate as a suffix then generates all frequent
patterns which end with the given suffix. The FPPF is
based on the prime factorization from the number
theory and does not require the creation of a tree
structure.

This paper is organized as follows. Section 2 presents
the related works and it also explains the FP-growth
algorithm. Section 3 presents our proposed approach
while section 4 presents the result. Conclusion is
given in the final section.

672

2.0 RELATED WORK

This section consists of two parts. The first part
focuses on some previous works related to this study
while the second part focuses on the FP-growth
algorithm and explains the algorithm through
example.

2.1 Previous Works

FP-growth (Han, Pei, & Yin, 2000) is a well-known
algorithm that uses the FP-tree data structure to
achieve a condensed representation of the database
transactions and employs a divide-and-conquer
approach to decompose the mining problem into a set
of smaller problems. In essence, it mines all the
frequent itemsets by recursively finding all frequent
itemsets in the conditional pattern base which is
efficiently constructed with the help of a node link
structure. A variant of FP-growth is the H-mine
algorithm (Pei, Han, Lu, Nishio, Tang, & Yang,
2001). It uses array-based and trie-based data
structures to deal with sparse and dense datasets,
respectively. Patricia Mine (Zandolin, 2009) employs
a compressed Patricia trie to store the datasets. FP-
growth (Grahne & Zhu, 2003) uses an array
technique to reduce the FP-tree traversal time. In FP-
growth based algorithms, recursive construction of
the FP-tree affects the algorithm’s performance.

Eclat (Zaki, Parthasarathy, Ogihara, Li, & W., 1997)
is the first algorithm to find frequent patterns by a
depth-first search and it has been devised to perform
well. It uses a vertical database representation and
counts the itemset supports using the intersection of
tids. However, because of the depth-first search,
pruning used in the Apriori algorithm is not
applicable during the candidate itemsets generation.
The Eclat (Zaki, Parthasarathy, Ogihara, Li, & W.,
1997) uses the vertical database representation. They
store the difference of tids called diffset between a
candidate k itemset and its prefix k-1 frequent
itemsets, instead of the tids intersection set. They
compute the support by subtracting the cardinality of
diffset from the support of its prefix k-1 frequent
itemset. This algorithm has been shown to gain
significant performance improvements over Eclat
(Zaki, Parthasarathy, Ogihara, Li, & W., 1997).
However, when the database is sparse, diffset will
lose its advantage over tidset.

VIPER (Shenoy, Haritsa, Sudarshan, Bhalotia, Bawa,
& Shah, 2000) and Mafia (Burdick, Calimlim, &
Gehrke, 2001) also use the vertical database layout
and the intersection to achieve a good performance.
The only difference is that they use the compressed
bitmaps to represent the transaction list of each
itemset. However, their compression scheme has
limitations especially when tids are uniformly
distributed. The search strategy of the algorithm
integrates a depth-first traversal of the itemset lattice

with effective pruning mechanisms that significantly
improve mining performance (Zaki & Gouda, Fast
Vertical Mining using Diffsets, 2003).

2.2 FP-growth Algorithm

In this section we examine the FP-growth algorithm
over a hypothetical dataset for a sailing company.
This example is picked up from the textbook Data-
Mining Concepts and Techniques (Han & Kamber.,
2006). The dataset is a collection of transaction
records. Each transaction has a unique ID and each
item is represented by an index Ij. The dataset is
represented in Table 1.

The algorithm starts with the first scan of the
database which derives the set of frequent items
(1-itemsets) and their support counts (frequencies).Le
t the minimum support count is 2. The set of frequent
items is sorted in the order of descending support
count. This resulting set or list is denoted as L. Thus,
we have:

L = {I2: 7, I1: 6, I3: 6, I4: 2, I5: 2}

Table 1: Transactional Data for a Sailing Company

TID List of items Ids
T100 I1, I2, I5
T200 I2, I4
T300 I2, I3
T400 I1, I2, I4
T500 I1, I3
T600 I2, I3
T700 I1, I3
T800 I1, I2, I3, I5
T900 I1, I2, I3

An FP-tree is then constructed as follows. First,
create the root of the tree, labeled with “null”. Scan
database D a second time. The items in each
transaction are processed in L order (i.e., sorted
according to descending support count), and a branch
is created for each transaction.

Figure 1: An FP-tree registers compressed, frequent

pattern information.

The tree obtained after scanning all of the
transactions is shown in Figure 1 with the associated
node-links. In this way, the problem of mining

673

frequent patterns in databases is transformed to that
of mining the FP-tree.

The FP-tree is mined as follows: Start from each
frequent length-1 pattern (as an initial suffix pattern);
construct its conditional pattern base (a
“subdatabase” which consists of the set of prefix
paths in the FP-tree co-occurring with the suffix
pattern), then construct its (conditional) FP-tree, and
perform mining recursively on such a tree. Mining of
the FP-tree is summarized in Table 2.

Table 2: Mining the FP-tree by creating conditional (sub-)

pattern bases

Item Conditional
Pattern Base

Conditional
FP-tree

Frequent
Pattern

I5 {{I2,I1:1},
{I2,I1,I3:1}} <I2:2,I1:2>

{I2,I5:2},
{I1,I5:2},

{I2,I1,I5:2}

I4 {{I2,I1:1},
{I2:1}} <I2:2> {I2,I1:2}

I3
{{I2,I1:2},

{I2:2},
{I1:2}}

<I2:4,I1:2>,
<I1:2>

{I2,I3:4},{I
1,I3:4},{I2,I

1,I3:2}
I2 {{I2:4}} <I2:4> {I2,I1:4}

3.0 THE PROPOSED APPROACH

The fundamental theorem of arithmetic says that
every positive integer has a unique prime
factorization. What the FP-growth does is getting a
common suffix and then extracts all possible prefixes
and after joining them to the suffix a frequent pattern
is created. In the FP-growth algorithm it is not
important that we are looking for all frequent patterns
end to a particular suffix like “I5” or we want to
extract all of the frequent patterns. In contrast with
FP-growth the FPPF for mining of all frequent
patterns end to a particular suffix like “I5”, does not
create entire of the tree and just focuses on prefixes
related to that particular suffix.

Without generating a tree, our algorithm called
Frequent Pattern-Prime Factor (FPPF) extracts the
frequent prefixes and generates the frequent itemset
which ends with that suffix. In Table 3 all of the used
symbols and acronyms which are used in this section
are presented.

The following provides some primitive definitions
which are necessary to clarify the frequent pattern
mining problem.

Definition 2.1: “L” is defined as a set of all frequent
itemsets with length 1 and is denoted as follows:
L = {I1: SUP(I1), I2: SUP(I2), …, In: SUP(In)}
where:

 “Ii” is a frequent itemset with length 1.

 “SUP (Ii)” is a support count of itemset “Ii”
which is greater than minimum support
count.

 “L” is sorted descending based on support
count, which means SUP (Ii) > SUP (Ii+1).

For instance referring to Table 1 the L set is {I2:7,
I1:6, I3:6, I4:2, I5:2}.

Table 3: Variable and their definition

Symbol List of items Ids

L Set of all frequent itemsets with
length 1.

SUP Support count of an itemset like “T”
or an item like “I”.

T A pattern or itemset like {a,b,c}.

M Set of all possible patterns or
itemsets.

FP A frequent pattern like “T” which
SUP(T) > minimum support.

Fj Set of all frequent patterns which
end with “Ij”.

F
Set of all possible frequent patterns
(Definition 2.5) over the set “M”
(Definition 2.3).

Fi Set of all frequent patterns which
their last item is “Ij L”.

Ij An item.

Definition 2.2: A pattern or itemset “T” with length
m is represented as T = {I1, I2, …, Im} such that “Ij”
represents the item in “jth” position of “T”. For
example if T = {a, b, c} then “I1” is the item “a”. All
of the patterns “Ti” is sorted in “L” order which
means SUP(Ii) > SUP(I(i+1)).

Definition 2.3: Set “M” is defined as a set of all
patterns or itemsets which is also called the
transaction table, and is represented as
M = {T1,T2,…,Tn} where “T” is a pattern or itemset
(Definition 2.2).

Definition 2.4: A frequent pattern “FP” is a pattern
like T = {I1, I2, …, Ik} such that the “SUP(T)” is
greater than minimum support count.

Definition 2.5: The set “Fj” is defined as a set of all
frequent patterns where their last item is “Ij” that “Ij

 L”. It means “Ij” is a suffix for all of the patterns in

“Fj” set. For example if “I3” is “h” then “F3” is set of
all frequent patterns like “abh” or “asdfh” where the
last item is “h”. Note that when “i ≠ j” then “Fj ∩ Fi
= ” which means there is no frequent pattern like

“T” that at the same time ends with two different
items “Ii” and “Ij”.

674

Definition 2.6: The set “F” is a set of all possible
frequent patterns (Definition 2.5) over the set M
(Definition 2.3). It is clear that we can partition all of
the frequent patterns or set “F” by their last item such
as Definition 2.5. Therefore set “F” is represented as
F = {F1, F2, …, Fm} such that:
 m ≤ number of items = .

 Fi Fj = .

 Fi = {T1,T2, …, Tk} such as:
 “Fi” is a set of all frequent patterns ends

with “Ii” (Definition 2.6).
 “Ti” is a frequent pattern.
 “Ti” = {I1, I2, …, Ii}

Frequent Pattern Mining Problem: The problem of
mining the frequent patterns of set “M” is reduced to
the problem of mining “Fj” sets. Frequent pattern
mining for “Fj” is achieved by extracting all prefixes
(subpattern) such that if joining the prefixes to the
related suffix “Ij” the result pattern is a frequent
pattern. In following the FPPF algorithm is
explained. The Figure 2 presents the first phase of the
algorithm.

Figure 2: The First Phase of FPPF (Data Pre-processing)

The first phase of FPPF is similar to the FP-growth.
In this phase FPPF derives the set of frequent items
(1-itemsets) and their support counts (frequencies)
which are greater than the minimum support count.
This set is called “L” and is sorted in the order of
descending support count. For example by
considering Table 1 the result is L = {I2: 7, I1: 6, I3:
6, I4: 2, I5: 2}.

In addition in the scanning process, each transaction
record is sorted based on the “L” set order. For
example in Table 1 the transaction “T100” is “I1, I2,
I5” thus according to the “L” set order it is sorted to
“I2, I1, I5”. The result of sorting is presented in Table
4.

Table 4: Sorted transactional data based on “L” set order
(descending on support count)

TID List of items Ids
T100 I2, I1, I5
T200 I2, I4
T300 I2, I3
T400 I2, I1, I4
T500 I1, I3
T600 I2, I3
T700 I1, I3
T800 I2, I1, I3, I5
T900 I2, I1, I3

Figure 3 presents the flows for the second phase
which consists of 7 main steps.

Step 1: In this step the last item or the most minimum
support count in the set “L” is selected as the suffix,
rather than the first. Then, when FPPF finds all of the
prefixes for this suffix, the next last item from the
“L” is selected and the same process is repeated until
there is no more unvisited item in “L”.

Steps 2, 3, 4: After selecting a suffix such as “Ik”
FPPF scans the transaction table (DB) or set “M”
(Definition 2.3). From each itemset or pattern that
contains “Ik” the related prefix which is called
candidate prefix (CP) is extracted. For example by
considering the transaction “T100” in Table 4 if the
“Ik” is “I5” then “I2, I1” is the candidate prefix.

Instead of using a tree for counting the pattern
support, FPPF uses prime numbers and prime
factorization. Each item in “L” is assigned a prime
number in ascending order. For instance in our
example after assigning the prime numbers, the L set
becomes {I2(2), I1(3), I3(5), I4(7), I5(11)}.

Step 5: When all of the candidate prefixes have been
extracted then for each candidate prefix like “Pi” a
unique number called “GENE” is generated as
follow.

If Pi = {Pi1,Pi2, …, Pik}, Pij L

GENE (Pi) = (F1)

The “H(x)” function is just a simple mapping that for
a given item like “x” it returns the related prime
number for the item. The function H(x) for the
example in Table 5 is presented.

According to the fundamental theorem of arithmetic
there are no two different rows with the same
“GENE” number.

Step 6: The generated “GENE” numbers will be
multiplied together. The result is called the

675

“Genome” of the given suffix. The mathematical
representation of “Genome” function as follows:

Table 5: Function H(x) Structure

x I2 I1 I3 I4 I5
H(x) 2 3 5 7 11

where “n” is the total number of patterns and the
“Len (Pi)” is the number of items for the pattern “Pi”.

The processes of steps 2, 3, 4, 5 and 6 are repeated
for all of the container rows or patterns and at the end
of each cycle the value of “Genome” will be updated
and multiplied with new “GENE” value.

Consider the Table 4. We assume that the given
suffix is “I5”. We can see there are two container
patterns (T100, T800) for “I5”. The result of
computing the “Genome” is presented in Table 6. For
each container row the candidate pattern is marked by
underline.

The “Genome” is a multiplication of these “GENE”
numbers. In this example it would be (2*3)*(2*3*5)
which can be simplified to while is a
numerical representation for all of the prefixes that by
joining to the “Ik” (in this example “I5”) the result is
a frequent pattern.

The multiplicity or power of each prime factor in the
Genome is the support count of the related item to
that prime factor. This support count is just among
the container patterns which contain “Ik”. Also all of
the prime factors with multiplicity lower than
minimum support must be removed.

According to the computed “Genome” for the Table 6
the power of prime factor 3 which is for item “I3” is
1 where it is lower than minimum support thus the
prime factor 5 must be removed. Finally the result of
“Genome” for “Ik” after removing 5 is equal to

. The multiplicity of prime factor 2 which is
for item I2” shows that “I2” is repeated two times as
part of prefix for the patterns that have “I5” as their
suffix.

Step 7: Finally FPPF maps the prime factors to their
related item. Thus from we have {I2:2, I1:2}
and this is known in FP-growth as Conditional FP-
tree and we call it Frequent Prefix. Finally FPPF
generates all of the subsets for this set and add the
given suffix to the end of each subset, the same as in
FP-growth.

Figure 3: The second phase of FPPF (Generate drequent
itemset)

In this example the subsets are {I2}, {I1}, {I2, I1},
{} and by adding “Ik” which is I5 three frequent
patterns {I2, I5}, {I1, I5}, {I2, I1, I5} are generated.
For the support count it is clear that for each frequent
itemset like {I2, I1, I5} the support count is the
minimum support count between items. For instance
the pattern {I2, I1, I5} has the support equal to 2.

676

Table 6: FPPF Process over Table 4.

TID Patterns Gene
T100 I2, I1, I5 H(I2)*H(I1) = 2 * 3
T200 I2, I4
T300 I2, I3
T400 I2, I1, I4
T500 I1, I3
T600 I2, I3
T700 I1, I3
T800 I2, I1, I3, I5 H(I2)*H(I1)*H(I3) = 2 * 3 *

5
T900 I2, I1, I3

4.0 RESULT AND DISCUSSION

Our evaluation for FPPF is done by computing the
time and memory complexity. For the purpose of the
evaluation, the algorithm is evaluated starting from
the step where a suffix is given to the FPPF
algorithm. Given “Ik” all of the transaction rows or
patterns must be checked to extract all of the
container patterns, therefore in the worst case all of
the rows must be checked. For each row or pattern
which includes the “Ik” the “GENE” for that pattern
must be computed. In the worst case we assume that
the length of each pattern is “m” and it is the length
of the longest pattern. According to equation (F2), we
should change the “Len (Pi)” to “m”

Therefore the time complexity for this algorithm is O
(n2).

For memory complexity it is clear that the maximum
data we should keep in the memory is just a simple
integer number for the Genome.

5.0 CONCLUSION

The main aim of FPPF is to reduce the memory and
time complexity. Without generating any tree FPPF is
able to extract all of the frequent patterns. Thus for a
large database no tree data structure is required in the
memory. Removing the tree generation step has
definitely increases the speed of the approach. FP-
growth is a noble approach that allows frequent
patterns to be identified without generating candidate.
But for large database and frequently changing or real
time database, creating this tree can be a time
consuming process.

Frequent pattern mining using prime factorization is a
fast and simple approach. Also when the database is

changed, only the rows that have been changed are
considered. This makes FPPF algorithm suitable for
real time transactional frequent pattern mining where
modifications and frequent pattern mining are
common.

REFERENCES

Burdick, Calimlim, M., & Gehrke, J. (2001).

MAFIA: A Maximal Frequent Itemset
Algorithm for Transactional Databases.
International Conference on Data Engineering,
pp. 443-452. Heidelberg, Germany.

Grahne, G., & Zhu, J. (2003). Efficiently using
Prefix-Trees in Mining Frequent Itemsets.
ICDM 2003 Workshop on Frequent Itemset
Mining Implementations, (p. n.p.). Melbourne.

Han, J., & Kamber., M. (2006). Data-Mining
Concepts and Techniques. Morgan Kaufmann
Publishers Elsevier.

Han, J., Pei, J., & Yin, Y. (2000). Mining Frequent
Patterns without Candidate Generation. ACM
SIGMOD International Conference on
Management of Data, pp. 1-12. Dallas, Texas:
ACM Press.

Pei, J., Han, J., Lu, H., Nishio, S., Tang, S., & Yang,
D. (2001.). Hmine: Hyper-Structure Mining of
Frequent Patterns in Large Databases. IEEE
International Conference on Data Mining, pp.
441-448. IEEE.

Shenoy, P., Haritsa, J. R., Sudarshan, S., Bhalotia, G.,
Bawa, M., & Shah, D. (2000). Turbo-Charging
Vertical Mining of Large Databases. ACM
SIGMOD International Conference on
Management of Data, pp. 22-23. Dallas, Texas:
ACM Press.

Zaki, M. J., & Gouda, K. (2003). Fast Vertical
Mining using Diffsets. The Nineth ACM
SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp.
326-335. Washington, D.C.: ACM Press.

Zaki, M. J., Parthasarathy, S., Ogihara, M., Li, & W.
(1997). New Algorithms for Fast Discovery of
Association Rules. Third International
Conference on Knowledge Discovery and Data
Mining, pp. 283-286. AAAI Press.

Zandolin, P. a. (2009). Mining Frequent Itemsets
using Patricia Tries. ICDM 2003 Workshop on
Frequent Itemset Mining Implementations (p.
n.p.). Melbourne: FIMI.

