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ABSTRACT 
 
An interesting method to frequent pattern mining 
without generating candidate pattern is called 
frequent-pattern growth, or simply FP-growth, which 
adopts a divide-and-conquer strategy as follows. 
First, it compresses the database representing 
frequent items into a frequent-pattern tree, or FP-
tree, which retains the itemset association 
information. It then divides the compressed database 
into a set of conditional databases (a special kind of 
projected database), each associated with one 
frequent item or pattern fragment, and mines each 
such database separately. For a large database, 
constructing a large tree in the memory is a time 
consuming task and increase the time of execution. In 
this paper we introduce an algorithm to generate 
frequent patterns without generating a tree and 
therefore improve the time complexity and memory 
complexity as well. Our algorithm works based on 
prime factorization, and is called Frequent Pattern-
Prime Factorization (FPPF).  
 
Keywords 
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1.0 INTRODUCTION 
 
Frequent patterns are patterns (such as itemsets, 
subsequences, or substructures) that appear in a data 
set frequently. For example, a set of items, such as 
milk and bread that appear frequently together in a 
transaction data set is a frequent itemset. A 
subsequence, such as buying first a PC, then a digital 
camera, and then a memory card, if it occurs 
frequently in a shopping history database, is a 
(frequent) sequential pattern. Finding such frequent 
patterns plays an essential role in mining 
associations, correlations, and many other interesting 
relationships among data.  

Most of the previous studies adopt an Apriori-like 
approach, which is based on the anti-monotone 
Apriori heuristic: “If any length k pattern is not 

frequent in the database, its length (k + 1) super-
pattern can never be frequent.” 

The Apriori candidate generate-and-test method 
significantly reduces the size of candidate sets, 
leading to good performance gain. However, it 
suffers from two nontrivial costs: 

i. It may need to generate a huge number of 
candidate sets. 

ii. It may need to repeatedly scan the database and 
check a large set of candidates by pattern 
matching.  

Can we design a method that mines the complete set 
of frequent itemsets without candidate generation? 
An interesting method in this attempt is called 
frequent-pattern growth, or simply FP-growth, which 
adopts a divide-and-conquer strategy as follows. 
First, it compresses the database representing 
frequent items into a frequent-pattern tree, or FP-tree, 
which retains the itemset association information. It 
then divides the compressed database into a set of 
conditional databases (a special kind of projected 
database), each associated with one frequent item or 
pattern fragment, and mines each such database 
separately.  

This study is to design an approach for the frequent 
pattern mining without candidate generation which is 
efficient and fast even for large database. The most 
significant benefit of this approach is low memory 
complexity as compared to FP-growth. Our approach 
called Frequent Pattern-Prime Factorization (FPPF) 
is similar to FP-growth where the least frequent item 
is candidate as a suffix then generates all frequent 
patterns which end with the given suffix. The FPPF is 
based on the prime factorization from the number 
theory and does not require the creation of a tree 
structure. 

This paper is organized as follows. Section 2 presents 
the related works and it also explains the FP-growth 
algorithm. Section 3 presents our proposed approach 
while section 4 presents the result. Conclusion is 
given in the final section. 
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2.0 RELATED WORK 
 
This section consists of two parts. The first part 
focuses on some previous works related to this study 
while the second part focuses on the FP-growth 
algorithm and explains the algorithm through 
example. 

2.1 Previous Works 
 
FP-growth (Han, Pei, & Yin, 2000) is a well-known 
algorithm that uses the FP-tree data structure to 
achieve a condensed representation of the database 
transactions and employs a divide-and-conquer 
approach to decompose the mining problem into a set 
of smaller problems. In essence, it mines all the 
frequent itemsets by recursively finding all frequent 
itemsets in the conditional pattern base which is 
efficiently constructed with the help of a node link 
structure. A variant of FP-growth is the H-mine 
algorithm (Pei, Han, Lu, Nishio, Tang, & Yang, 
2001). It uses array-based and trie-based data 
structures to deal with sparse and dense datasets, 
respectively. Patricia Mine (Zandolin, 2009) employs 
a compressed Patricia trie to store the datasets. FP-
growth (Grahne & Zhu, 2003) uses an array 
technique to reduce the FP-tree traversal time. In FP-
growth based algorithms, recursive construction of 
the FP-tree affects the algorithm’s performance. 

Eclat (Zaki, Parthasarathy, Ogihara, Li, & W., 1997) 
is the first algorithm to find frequent patterns by a 
depth-first search and it has been devised to perform 
well. It uses a vertical database representation and 
counts the itemset supports using the intersection of 
tids. However, because of the depth-first search, 
pruning used in the Apriori algorithm is not 
applicable during the candidate itemsets generation. 
The Eclat (Zaki, Parthasarathy, Ogihara, Li, & W., 
1997) uses the vertical database representation. They 
store the difference of tids called diffset between a 
candidate k itemset and its prefix k-1 frequent 
itemsets, instead of the tids intersection set. They 
compute the support by subtracting the cardinality of 
diffset from the support of its prefix k-1 frequent 
itemset. This algorithm has been shown to gain 
significant performance improvements over Eclat 
(Zaki, Parthasarathy, Ogihara, Li, & W., 1997). 
However, when the database is sparse, diffset will 
lose its advantage over tidset. 

VIPER (Shenoy, Haritsa, Sudarshan, Bhalotia, Bawa, 
& Shah, 2000) and Mafia (Burdick, Calimlim, & 
Gehrke, 2001) also use the vertical database layout 
and the intersection to achieve a good performance. 
The only difference is that they use the compressed 
bitmaps to represent the transaction list of each 
itemset. However, their compression scheme has 
limitations especially when tids are uniformly 
distributed. The search strategy of the algorithm 
integrates a depth-first traversal of the itemset lattice 

with effective pruning mechanisms that significantly 
improve mining performance (Zaki & Gouda, Fast 
Vertical Mining using Diffsets, 2003). 

2.2 FP-growth Algorithm 

In this section we examine the FP-growth algorithm 
over a hypothetical dataset for a sailing company. 
This example is picked up from the textbook Data-
Mining Concepts and Techniques (Han & Kamber., 
2006). The dataset is a collection of transaction 
records. Each transaction has a unique ID and each 
item is represented by an index Ij.  The dataset is 
represented in Table 1. 
 
The algorithm starts with the first scan of the 
database which derives the set of frequent items 
(1-itemsets) and their support counts (frequencies).Le
t the minimum support count is 2. The set of frequent 
items is sorted in the order of descending support 
count. This resulting set or list is denoted as L. Thus, 
we have: 
 

L = {I2: 7, I1: 6, I3: 6, I4: 2, I5: 2} 
 

Table 1: Transactional Data for a Sailing Company 
 

TID List of  items Ids 
T100 I1, I2, I5 
T200 I2, I4 
T300 I2, I3 
T400 I1, I2, I4 
T500 I1, I3 
T600 I2, I3 
T700 I1, I3 
T800 I1, I2, I3, I5 
T900 I1, I2, I3 

 
An FP-tree is then constructed as follows. First, 
create the root of the tree, labeled with “null”. Scan 
database D a second time. The items in each 
transaction are processed in L order (i.e., sorted 
according to descending support count), and a branch 
is created for each transaction. 

 
Figure 1: An FP-tree registers compressed, frequent 

pattern information. 
 
The tree obtained after scanning all of the 
transactions is shown in Figure 1 with the associated 
node-links. In this way, the problem of mining 
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frequent patterns in databases is transformed to that 
of mining the FP-tree.  

The FP-tree is mined as follows: Start from each 
frequent length-1 pattern (as an initial suffix pattern); 
construct its conditional pattern base (a 
“subdatabase” which consists of the set of prefix 
paths in the FP-tree co-occurring with the suffix 
pattern), then construct its (conditional) FP-tree, and 
perform mining recursively on such a tree. Mining of 
the FP-tree is summarized in Table 2.  
 
 
Table 2: Mining the FP-tree by creating conditional (sub-) 

pattern bases 
 

Item Conditional 
Pattern Base 

Conditional 
FP-tree 

Frequent 
Pattern 

I5 {{I2,I1:1}, 
{I2,I1,I3:1}} <I2:2,I1:2> 

{I2,I5:2}, 
{I1,I5:2}, 

{I2,I1,I5:2} 

I4 {{I2,I1:1}, 
{I2:1}} <I2:2> {I2,I1:2} 

I3 
{{I2,I1:2}, 

{I2:2}, 
{I1:2}} 

<I2:4,I1:2>, 
<I1:2> 

{I2,I3:4},{I
1,I3:4},{I2,I

1,I3:2} 
I2 {{I2:4}} <I2:4> {I2,I1:4} 

 
 
3.0 THE PROPOSED APPROACH 

The fundamental theorem of arithmetic says that 
every positive integer has a unique prime 
factorization. What the FP-growth does is getting a 
common suffix and then extracts all possible prefixes 
and after joining them to the suffix a frequent pattern 
is created. In the FP-growth algorithm it is not 
important that we are looking for all frequent patterns 
end to a particular suffix like “I5” or we want to 
extract all of the frequent patterns. In contrast with 
FP-growth the FPPF for mining of all frequent 
patterns end to a particular suffix like “I5”, does not 
create entire of the tree and just focuses on prefixes 
related to that particular suffix. 

Without generating a tree, our algorithm called 
Frequent Pattern-Prime Factor (FPPF) extracts the 
frequent prefixes and generates the frequent itemset 
which ends with that suffix. In Table 3 all of the used 
symbols and acronyms which are used in this section 
are presented. 

The following provides some primitive definitions 
which are necessary to clarify the frequent pattern 
mining problem. 

Definition 2.1: “L” is defined as a set of all frequent 
itemsets with length 1 and is denoted as follows: 
L = {I1: SUP(I1), I2: SUP(I2), …, In: SUP(In)}   
where: 

 “Ii” is a frequent itemset with length 1. 

 “SUP (Ii)” is a support count of itemset “Ii” 
which is greater than minimum support 
count. 

 “L” is sorted descending based on support 
count, which means SUP (Ii) > SUP (Ii+1). 

 
For instance referring to Table 1 the L set is {I2:7, 
I1:6, I3:6, I4:2, I5:2}. 

 
Table 3: Variable and their definition 

 
Symbol List of  items Ids 

L Set of all frequent itemsets with 
length 1. 

SUP Support count of an itemset like “T” 
or an item like “I”. 

T A pattern or itemset like {a,b,c}. 

M Set of all possible patterns or 
itemsets. 

FP A frequent pattern like “T” which 
SUP(T) > minimum support. 

Fj Set of all frequent patterns which 
end with “Ij”. 

F 
Set of all possible frequent patterns 
(Definition 2.5) over the set “M” 
(Definition 2.3). 

Fi Set of all frequent patterns which 
their last item is “Ij  L”. 

Ij An item. 
 

Definition 2.2: A pattern or itemset “T” with length 
m is represented as T = {I1, I2, …, Im} such that “Ij” 
represents the item in “jth” position of “T”. For 
example if T = {a, b, c} then “I1” is the item “a”. All 
of the patterns “Ti” is sorted in “L” order which 
means SUP(Ii) > SUP(I(i+1)). 

Definition 2.3: Set “M” is defined as a set of all 
patterns or itemsets which is also called the 
transaction table, and is represented as  
M = {T1,T2,…,Tn} where “T” is a pattern or itemset 
(Definition 2.2).  

Definition 2.4: A frequent pattern “FP” is a pattern 
like T = {I1, I2, …, Ik} such that the    “SUP(T)” is 
greater than minimum support count.  
 
Definition 2.5: The set “Fj” is defined as a set of all 
frequent patterns where their last item is “Ij” that “Ij 

 L”. It means “Ij” is a suffix for all of the patterns in 

“Fj” set. For example if “I3” is “h” then “F3” is set of 
all frequent patterns like “abh” or “asdfh” where the 
last item is “h”. Note that when “i ≠ j” then “Fj ∩ Fi 
=  ” which means there is no frequent pattern like 

“T” that at the same time ends with two different 
items “Ii” and “Ij”. 



 

674 

Definition 2.6: The set “F” is a set of all possible 
frequent patterns (Definition 2.5) over the set M 
(Definition 2.3). It is clear that we can partition all of 
the frequent patterns or set “F” by their last item such 
as Definition 2.5. Therefore set “F” is represented as 
F = {F1, F2, …, Fm} such that: 
 m ≤ number of items = . 

 Fi   Fj = . 

 Fi = {T1,T2, …, Tk} such as: 
 “Fi” is a set of all frequent patterns ends 

with “Ii” (Definition 2.6). 
 “Ti” is a frequent pattern.  
 “Ti” = {I1, I2, …, Ii} 

 
Frequent Pattern Mining Problem: The problem of 
mining the frequent patterns of set “M” is reduced to 
the problem of mining “Fj” sets. Frequent pattern 
mining for “Fj” is achieved by extracting all prefixes 
(subpattern) such that if joining the prefixes to the 
related suffix “Ij” the result pattern is a frequent 
pattern. In following the FPPF algorithm is 
explained. The Figure 2 presents the first phase of the 
algorithm. 

 
Figure 2: The First Phase of FPPF (Data Pre-processing) 

 
The first phase of FPPF is similar to the FP-growth. 
In this phase FPPF derives the set of frequent items 
(1-itemsets) and their support counts (frequencies) 
which are greater than the minimum support count. 
This set is called “L” and is sorted in the order of 
descending support count. For example by 
considering Table 1 the result is L = {I2: 7, I1: 6, I3: 
6, I4: 2, I5: 2}.  
 
In addition in the scanning process, each transaction 
record is sorted based on the “L” set order. For 
example in Table 1 the transaction “T100” is “I1, I2, 
I5” thus according to the “L” set order it is sorted to 
“I2, I1, I5”. The result of sorting is presented in Table 
4. 
 
 
 
 
 
 
 

Table 4: Sorted transactional data based on “L” set order 
(descending on support count) 

 
TID List of  items Ids 
T100 I2, I1, I5 
T200 I2, I4 
T300 I2, I3 
T400 I2, I1, I4 
T500 I1, I3 
T600 I2, I3 
T700 I1, I3 
T800 I2, I1, I3, I5 
T900 I2, I1, I3 

 
Figure 3 presents the flows for the second phase 
which consists of 7 main steps. 

Step 1: In this step the last item or the most minimum 
support count in the set “L” is selected as the suffix, 
rather than the first. Then, when FPPF finds all of the 
prefixes for this suffix, the next last item from the 
“L” is selected and the same process is repeated until 
there is no more unvisited item in “L”.  

Steps 2, 3, 4: After selecting a suffix such as “Ik” 
FPPF scans the transaction table (DB) or set “M” 
(Definition 2.3). From each itemset or pattern that 
contains “Ik” the related prefix which is called 
candidate prefix (CP) is extracted. For example by 
considering the transaction “T100” in Table 4 if the 
“Ik” is “I5” then “I2, I1” is the candidate prefix. 

Instead of using a tree for counting the pattern 
support, FPPF uses prime numbers and prime 
factorization. Each item in “L” is assigned a prime 
number in ascending order. For instance in our 
example after assigning the prime numbers, the L set 
becomes {I2(2), I1(3), I3(5), I4(7), I5(11)}. 

Step 5: When all of the candidate prefixes have been 
extracted then for each candidate prefix like “Pi” a 
unique number called “GENE” is generated as 
follow. 

If Pi = {Pi1,Pi2, …, Pik}, Pij  L  

GENE (Pi) =                                (F1) 

The “H(x)” function is just a simple mapping that for 
a given item like “x” it returns the related prime 
number for the item. The function H(x) for the 
example in Table 5 is presented. 

According to the fundamental theorem of arithmetic 
there are no two different rows with the same 
“GENE” number. 

Step 6: The generated “GENE” numbers will be 
multiplied together. The result is called the 
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“Genome” of the given suffix. The mathematical 
representation of “Genome” function as follows: 

Table 5: Function H(x) Structure  

x I2 I1 I3 I4 I5 
H(x) 2 3 5 7 11 

 

 

where “n” is the total number of patterns and the 
“Len (Pi)” is the number of items for the pattern “Pi”.  

The processes of steps 2, 3, 4, 5 and 6 are repeated 
for all of the container rows or patterns and at the end 
of each cycle the value of “Genome” will be updated 
and multiplied with new “GENE” value. 

Consider the Table 4. We assume that the given 
suffix is “I5”. We can see there are two container 
patterns (T100, T800) for “I5”. The result of 
computing the “Genome” is presented in Table 6. For 
each container row the candidate pattern is marked by 
underline. 

The “Genome” is a multiplication of these “GENE” 
numbers. In this example it would be (2*3)*(2*3*5) 
which can be simplified to  while is a 
numerical representation for all of the prefixes that by 
joining to the “Ik” (in this example “I5”) the result is 
a frequent pattern.  

The multiplicity or power of each prime factor in the 
Genome is the support count of the related item to 
that prime factor. This support count is just among 
the container patterns which contain “Ik”. Also all of 
the prime factors with multiplicity lower than 
minimum support must be removed. 

According to the computed “Genome” for the Table 6 
the power of prime factor 3 which is for item  “I3” is 
1 where it is lower than minimum support thus the 
prime factor 5 must be removed. Finally the result of 
“Genome” for “Ik” after removing 5 is equal to 

. The multiplicity of prime factor 2 which is 
for item I2” shows that “I2” is repeated two times as 
part of prefix for the patterns that have “I5” as their 
suffix.   

Step 7: Finally FPPF maps the prime factors to their 
related item. Thus from  we have {I2:2, I1:2} 
and this is known in FP-growth as Conditional FP-
tree and we call it Frequent Prefix. Finally FPPF 
generates all of the subsets for this set and add the 
given suffix to the end of each subset, the same as in 
FP-growth.  

 

 

 

Figure 3: The second phase of FPPF (Generate drequent 
itemset) 

 

In this example the subsets are {I2}, {I1}, {I2, I1}, 
{} and by adding “Ik” which is I5 three frequent 
patterns {I2, I5}, {I1, I5}, {I2, I1, I5} are generated. 
For the support count it is clear that for each frequent 
itemset like {I2, I1, I5} the support count is the 
minimum support count between items. For instance 
the pattern {I2, I1, I5} has the support equal to 2. 
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Table 6: FPPF Process over Table 4.  

TID Patterns Gene 
T100 I2, I1, I5  H(I2)*H(I1) = 2 * 3 
T200 I2, I4  
T300 I2, I3  
T400 I2, I1, I4  
T500 I1, I3  
T600 I2, I3  
T700 I1, I3  
T800 I2, I1, I3, I5 H(I2)*H(I1)*H(I3) = 2 * 3 * 

5  
T900 I2, I1, I3  

 

4.0 RESULT AND DISCUSSION 

Our evaluation for FPPF is done by computing the 
time and memory complexity. For the purpose of the 
evaluation, the algorithm is evaluated starting from 
the step where a suffix is given to the FPPF 
algorithm. Given “Ik” all of the transaction rows or 
patterns must be checked to extract all of the 
container patterns, therefore in the worst case all of 
the rows must be checked. For each row or pattern 
which includes the “Ik” the “GENE” for that pattern 
must be computed. In the worst case we assume that 
the length of each pattern is “m” and it is the length 
of the longest pattern. According to equation (F2), we 
should change the “Len (Pi)” to “m” 

 

Therefore the time complexity for this algorithm is O 
(n2).  
 
For memory complexity it is clear that the maximum 
data we should keep in the memory is just a simple 
integer number for the Genome.  

5.0 CONCLUSION 

The main aim of FPPF is to reduce the memory and 
time complexity. Without generating any tree FPPF is 
able to extract all of the frequent patterns. Thus for a 
large database no tree data structure is required in the 
memory. Removing the tree generation step has 
definitely increases the speed of the approach. FP-
growth is a noble approach that allows frequent 
patterns to be identified without generating candidate. 
But for large database and frequently changing or real 
time database, creating this tree can be a time 
consuming process. 

Frequent pattern mining using prime factorization is a 
fast and simple approach. Also when the database is 

changed, only the rows that have been changed are 
considered. This makes FPPF algorithm suitable for 
real time transactional frequent pattern mining where 
modifications and frequent pattern mining are 
common. 
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