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ABSTRACT 
 
Heuristic knowledge is an instinct naturally embedded 
in animals for navigational purposes. Ant Colony 
Optimization (ACO) has captured  this mechanism 
into a well defined technique to solve TSP and routing 
problems. Now, ACO gives a general framework to 
solve other problems in similar nature. This paper 
tends to explain how knowledge discovery is done in 
ACO and tested the modified ACO in solving robot’s 
path planning problem. The results have been 
encouraging for ACO to produce a good navigational 
path for a robot to follow but the performance has 
been inferior to fuzzy approach used in the same 
problem domain. The results are discussed in detail 
and the comparative findings are justified clearly 
focusing on the unique criteria of the chosen ACO 
technique. 
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1.0 THE ACO MODEL 
 
Ants are sometime annoying especially when they 
invaded our kitchen. They will go all over the place to 
search for food. But before you dig under your kitchen 
cabinet for the ant killer, consider how a group of ants 
can teach us to solve problems. Try a simple 
experiment by breaking  the trail made by those ants 
from behind the wall to your sugar jar. Make a line 
with your finger so that the trail is broken. You will 
see in an instance that those ants at the back of the 
trail will disperse and loose direction. But before you 
know it the broken trail will be amended (maybe 
slightly off track) and they continue the work as usual. 
This is the very ability that has stunned scientists – the 
ability to find the shortest path.  
 
1.1 Knowledge discovery by means of updating 

pheromone trails  
The pheromone trails are updated after all the ants 
have constructed their tours. The strategy is used to 
provide string additional reinforcement to the arc 
belonging to the best tour found since the start of the 
algorithm. Thus, pheromone evaporation is 
implemented by an equation (1.1a) (Dorigo & Stutzle, 

2004), where 0< <1 is the pheromone evaporation 
rate. The parameter  is used to avoid unlimited 
accumulation of the pheromone trails and its enable 
the algorithm to explore new trails. After evaporation, 
all ants deposit pheromone on the arcs they have 
crossed in their tour as given in equation (1.1b) where 
∆  is defined as in equation (1.1c) and ∆ is 
defined as in equation (1.1d) (Dorigo & Stutzle, 
2004). In equation (1.1c),  is the length of the tour, 

, built by the  ant which is computed as the 
sum of the length of the arcs belonging to . Thus, 
the better ant’s tour has more pheromone on then tour 
arcs and therefore the arcs are more likely to be 
chosen by ants in the future iterations of the algorithm. 
In equation (2.1d), the elitist strategy provides strong 
additional reinforcement to the best tour so far by 
adding a quantity e/  to its arcs where e is a 
parameter that defines the weight given to the best so 
far by tour   and   is its length (Dorigo & 
Stutzle 2004).. 
 
 

1 ·   (1.1a) 
 

 ∑ ∆  ∆   (1.1b) 
 
∆  1        ,  ,    ⁄

0,
    (1.1c) 

 
∆  1        ,  ,    ⁄

0,
        (1.1d) 

 
 
There are three ideas from natural ant behaviour that 
are simulated in the ACO model :  
 
1)The preference for paths with a  high pheromone 
level4 . 
2)The higher rate of growth of the amount  of 
pheromone on shorter paths. 
3)The trail mediated communication among ants.  
 
 

                                                 
4 Pheromone level is the secretion produced by ants when 

they make a trail. 
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2.0 ACO IN ROBOT PATH PLANNING 
PROBLEM 

 
The use of ACO in TSP gives a general framework to 
solve other problems in similar nature. The same 
framework will be used to solve robot’s path planning 
problem. The aim of the problem is find the shortest 
tour while avoiding the obstacles (Gil et al, 1990; 
Firby, 1987). Robot landscape is defined as a two 
dimensional grid with 100 by 100 squares . This is a 
simulated workspace that will be used throughout this 
experiment to implement ACO as an engine to drive 
the robot from a defined starting position to a final 
target destination. In between there will be obstacles 
to test the vulnerability of the ACO algorithm in 
maneuvering the robot to avoid collision (Kaufman, 
1987). 
 

(x-1,y+1)  (x+1,y+1) 

 (x,y)  

(x-1,y-1)  (x+1,y+1) 

Figure 2.1: An ant current position (bold) with 4 possible 
next positions (italic) 

An ACO is considered a global path planning strategy 
where it works by having a complete knowledge about 
the environment. It searches paths within the valid 
region and establish a connection between a start state 
with a goal state. A global planner stops the search 
when a valid path is found or no path is detected 
(Majdi & Soleimanpour, 2008).  

2.1 Knowledge Robot Navigation and Obstacle 
Avoidance Strategy in ASO 

Robot navigation knowledge algorithm must be 
implemented in order to allow successful obstacle 
avoidance. In the design process a robot navigation 
strategy is designed as illustrated in Figure 2.1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1:Flowchart for robot navigation and obstacle 
avoidance strategy 

 

3.0 THE EXPERIMENTS 
 
Figures should be labeled with "Figure" and tables 
with "Robot path planning problem is one of the 
interesting problems that have been the aim of many 
researches in artificial intelligence. In this study, we 
focus on how the robot can be manipulated to learn 
the surrounding landscape. For these experiments, 
there are three primary landscapes that have been the 
testing ground; The Big Hall, The Wall Following and 
the Volcano Challenge. 

 
Figure 3.1: The Big Hall Set Up 

The big Hall set up is supposed to be the simplest task 
that a robot could be assigned for. A goal-seeking 
behavior is adopted to find the target. This task 
resulted maximum performance for both learning 
algorithms. 

 

Figure 3.2: The Wall Following Set Up 

 
The Wall Following set up is aimed at the added 
challenge for machine learning capability. The 
simulated robot will need to recognize he obstacles 
and try to avoid it while keeping the target in the 
search. The robot was stationed at different starting 
positions prior to the search and find activities. These 
different starting points are reflected in the results that 
will be shown in the later part of this report. Basically 
the farther the robot being stationed has a direct 
impact on the performance for one algorithm but 
insignificant to another one. 

start 

Set initial start position 

Set initial start position 

Start Ant and reset at start point 

Move to four neighbor grid point randomly 

Iteration is 
enough 

Calculate tour 
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update, register 
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start 
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Figure 3.3: The Volcano Challenge Set Up 

The volcano challenge gives some added obstacles to 
increase the difficulty level for machine learning 
algorithms to drive the robot to the target area. 

4.0 THE RESULTS 
 
The performance for the two learning algorithms ; ant 
colony optimization (ACO) and Fuzzy Logic 
Approach (Fuzzy), are measured with the distance 
taken to reach destination and time performance to 
find the target. 
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Figure 4.1: The Big Hall Experiment 

 
The results of  the Big Hall experiment is shown in 
Figure  and it shows how the Fuzzy approach required 
lesser distance to reach the destination. The means 
were produced from 20 starting positions. 
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Figure 4.2: The Wall Following Experiment 

The results for the wall following experiment also 
gives an indication that the fuzzy approach performed 
better by requiring lesser distance to reach the goal.  
 
The volcano challenge shows the results that the fuzzy 
approach is better than the ACO learning algorithms. 
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Figure 4.3: The Volcano Challenge 

 
4.1 Findings 
The comparison results of the proposed methods for 
distance traverses from the initial position to the goal 
position as shown in Figures 4.1,4.2,4.3, reveal that 
both proposed methods performances are satisfactory 
for goal seeking, wall following and obstacles 
avoidance behaviours. Besides, the proposed methods 
are able to find the shortest path from initial position 
to the goal position while avoiding obstacle 
constellations in a reasonable time.  
 

 
Figure 5.1: Time performance for big hall experiment 

 
The results of the experiments using the proposed 
methods for CPU time consumptions to complete the 
task are shown in Figures 5.1, 5.2 and 5.3. It is shown 
that in most cases, the Fuzzy approach has consumed 
less CPU computations time compared to ACO. In 
addition, the overall performance of Ant Colony 
Optimization on three simulations models as 
mentioned before shows  that Ant Colony 
Optimization consumed CPU time double than the 
Fuzzy approach. A reasonable explanation is that Ant 
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Colony Optimization algorithm works by reinforcing 
good solutions., therefore, more CPU time is 
consumed in order to generate good solutions. 
 

 
Figure 5.2: Time Performance for the wall following 

experiment 

 

 
 

Figure 5.3: Time performance for the volcano challenge. 
 
ACO  in many cases. The Fuzzy approach 
performances are better in terms of distance traverses 
from the initial position to the goal position CPU time 
consumptions to complete the task for goal seeking, 
wall following and obstacles avoidance behaviours. 
This is due to the fact that the fuzzy based navigation 
strategy employed sensor to guide local planner 
navigation and minimizes collision with the stationary 
obstacles.  
 
In addition, the Fuzzy approach adopted navigation 
method which is based on a confined sensor region 
surrounding actual state and do not consider the entire 
state space. As the result, the amount of computation 
for Fuzzy Controller System which is employed by the 

Fuzzy approach is reduced by using only the nearest 
obstacles to determine the robot direction. 
 
 
5.0 DISCUSSION 

This paper has discussed in detail the experimental 
results of the Fuzzy approach and Ant Colony 
Optimization for robot path planning problem. The 
performances of the proposed methods were evaluated 
on goal seeking, wall following and obstacles 
avoidance behaviours which was measured by 
distance traverses from the initial position to the goal 
position and CPU time consumptions to complete the 
task on three simulation models . Each of the 
simulation models has been designed with different 
environment and stationary obstacles constellations.  

Ant Colony Optimization which employed Elitist Ant 
System does not performance as good as Fuzzy 
Controller System on many problem instances. Such a 
result is due to the fact that the Ant Colony 
Optimization adopted global navigation strategy. The 
global path planning works by having complete 
knowledge about the environment. It searches a path 
inside the region of valid configurations, thereby 
connecting a start state with a goal state. Therefore, 
the exploration of the robot’s workspace considers the 
entire state space that leads to very time consuming 
process.  
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