

644

The Impact of Population Size on Knowledge Acquisition in Genetic
Algorithms Paradigm: Finding Solutions in the Game of Sudoku

Nordin Abu Bakar, Muhammad Fadhil Mahadzir

Faculty of Computer & Mathematical Sciences

Universiti Teknologi MARA (UiTM)
40450 Shah Alam,

Selangor, MALAYSIA
nordin@tmsk.uitm..edu.my

ABSTRACT

Population size is an important component in genetic
algorithms (GAs).The concept of population in GAs
has contributed to a unique searching strategy which
empower its search process through the massive
volume of the data in a population. The purpose of
this study is to see how the impact of population size
on genetic algorithms in producing correct solution
for a Sudoku puzzle. Sudoku is a Japanese number
puzzle game that has become a worldwide
phenomenon. The puzzle involves completing a grid
of cells by assigning a single number to each cell.
The numbers in a row or a column must consist of
any one of the numbers from 1 to 9; no repetition is
allowed. GA will be used to generate the correct
solution of Sudoku puzzles. The mechanism to
produce legal Sudoku grid will follow the
requirements needed and meet all the constraints. A
fitness function is designed to evaluate legal grids
and GA will be tested for performance and time
efficiency. The challenges lie on how GA will
represent a Sudoku grid in the process and the
effectiveness of its operators such as crossover and
mutation. The results show how different population
size can produce different solutions. The best
performance is observed at 500 population size. The
paper will conclude with an insight of this value and
its significance to the knowledge acquisition in GA
paradigm..

Keywords
Genetic algorithms, Sudoku, population size, fitness
function, knowledge acquisition

1. INTRODUCTION

Most researchers (Goldberg,1989;Bäck, 1996;De
Jong, 1975) have agreed that the performance of
GAs is dependent upon components such as the
probability of the operators used, the operators
themselves, and the diversification of the population.
The common practice is that the parameters are set at
the beginning and the process will run according to
these parameters until a good solution is found.
However, in most cases GAs fail to produce good
results in an acceptable time frame. Since GA is

modeled after the evolution process, the longer the
runs take place, the results will get better.
 Previous researchers have suggested the values for
GAs parameters (such population size, crossover rate
and mutation rate)that worked well in their research(
De Jong ,1975; Grefenstette ,1986; Goldberg, 1989).
The main drawback is that the problem being solved
might be different and the solutions found maybe
well below the optimum. The importance of the
population size is due to the fact that it represents the
volume of the candidate solutions that are being
considered in the search. When the population size is
controlled, the search space will be limited or
extended. One of the components in the genetic
process that will be affected by adjusting the
population size is the selective pressure. If the
population size is too large, the selective pressure
will be reduced considerably and this will make the
search ineffective. On the other hand if the
population size is too small, selective pressure will be
strong and this exploits certain individuals that will
result in a premature convergence. The second
component that is affected by changing population
size is the population diversity. Whitley concluded
that when the population is small, the search focuses
on the top individuals in the population; as a result
population diversity is lost. Therefore, it is clear that
population provokes certain features whenever the
population size is different. Exploitation of top
individuals will occur if population size is small and
exploration of new dimensions will take place if
population size is large. In order to take advantage of
these features, we propose the population size to be
adapted as the GA runs.

2. METHODOLOGY

2.1. The Method
Genetic Algorithm is used in this study to
generate the correct solution of Sudoku
puzzles. The type of encoding in GA that
has been used is permutation encoding.
In permutation encoding, every chromosome
is a string of numbers, which represents
number in a sequence.

645

2.2. Initial Population
In this study, an integer array of 81 numbers is
generated randomly to represents a Sudoku grid and a
chromosome(Mantere & Koljonen, 2006). The array
is divided into nine sub-blocks of nine numbers
corresponding to the 3×3 sub squares from left to
right and from top to bottom. At the starting of
development process, the population size is set to 100
. But the experiments indicated that a bigger
population size is better because this population size
can find a correct solution in lowest number of
generation. Figure 3.3 show the example of Sudoku
grids and the integer array of 81 numbers that
represent the chromosome.

 Individual:
2 3 6 8 5 4 9 7 1
5 8 9 2 7 1 6 4 3
4 1 7 3 6 9 8 2 5
4 6 8 7 2 3 1 9 5
1 2 5 9 6 4 7 3 8
7 9 3 5 8 1 6 4 2
6 8 7 5 4 9 3 1 2
3 9 2 8 1 7 4 5 6
1 5 4 2 3 6 9 7 8

Individual:

Figure 3.3: An example of Sudoku grid and the

representation of Sudoku puzzles in GA. One possible
solution (individual) is an array of 81 numbers that is

divided into nine sub blocks of nine numbers.

2.3. Fitness Value
The fitness value will be evaluated by using some
equations. Each equation represents the constraints of
Sudoku Puzzle. Fitness is scaled between 0 and 1;
where a value 1 represents a perfect solution. The
descriptions of each equation are as follows (Mantere
& Koljonen, 2006; Moraglio & Togelius, 2007;Gold,
2005):

1) The first equation (is to count the duplicate

number in each sub block. It is required that each
sub block must have all elements from set A
without repetition where A = {1,2,3,4,5,6,7,8,9}.

 0;

2) The second equation (is to count the

duplicate number in each row and column set. It
is required that each row and column must have
all elements from set A without repetition where
A = {1,2,3,4,5,6,7,8,9}.

 0;

3) The third equation (requires that row or
column sums must be equal to 45.

| ∑ , |, .

4) The fourth equation (requires that each row

and column product should be equal to 9!.

 | ∏ ,,

!

5) The last equation is to calculate the overall

fitness value of the initial population.

∑ /
 ;(where n=4 ,n is number of

constraints)

After the fitness is calculated, GA will rank the
solution accordingly. If a perfect solution is found
(where fitness value is 1), the process will be
terminated. If not the process will continue until GA
reach a certain number of generations.

2.4. Selection
In the selection process, an individual is
probabilistically selected from the initial population
on the basis of its fitness and the selected individual
is then copied into the next generation of the
population without any change. The selection method
that has been used in this study is rank selection
which means all the population will be rank again
each other based on their fitness. The population with
the fitness value is close to 1 will be in the top
ranking and so on (Joachim, 2004; Goldberg,1989).

2.5. Crossover
The genetic operation of crossover allows the
creation of new individuals which accounts for the
generation of new points in the search space to be
tested. Crossover starts with two parents
independently selected probabilistically from the
population on the basis of their fitness (Joachim,
2004; Goldberg,1989). The crossover rate was fixed
at 0.7 at the onset of this study.

2.6. Mutation

236854971

589271643

417369825

468723195

125964738

793581642

687549312

392817456

154236978

646

The operation of mutation begins with the
probabilistic selection of an individual from the
population on the basis of its fitness. When mutation
process is applied, each value in every column and
sub block will be checked. If duplicate value is
found, that value will be swap with other value in that
row. This operation is done sequentially. The altered
individual is then copied into the next generation of
the population. In this case, the mutations are applied
only inside a sub-block. In the first development of
this project, mutation rate has been set to 0.1. The
result shows that mutation operation has helped the
population fitness to increase. (Joachim, 2004;
Goldberg,1989)

2.7. New Population
After the process of reproduction, crossover, and
mutation is done, the new population is derived and
the process will be continued to calculate the fitness
value. All of the process will be repeated until the
best solution or the correct answer is found.

3. THE RESULTS

Table 3.1 shows the results that have been obtained..
The GA is run with several different population sizes.
The experiments are done a few times for each
population and the means of the results are taken. In
order to illustrate the findings more clearly the graphs
are produced.

Table 3.1: The results obtained from the experiment.

 No. of
Population

Time
(sec)

No. of
Generation

No. of
Crossover
Applied

No. of
Mutation
Applied

10 2.692 11337 1131 7934
50 1.255 1274 128 881
100 1.568 784 80 549
300 1.104 156 13 129
500 0.995 88 9 58
1000 6.499 224 21 155

3.1. Time taken to find correct solution
The graph in Figure 3.1 shows the time taken by the
GA to find the correct Sudoku grid in different
population size. As the population grew, the GA was
able to find the correct solution in lesser time.
However, when the population was at 1000, the time
taken to find good solution had dramatically
increased.

Time to Complete (sec)

Size of Population

Figure 3.1: The time versus population size.

3.2. Where the correct solutions are found
The graph in Figure 3.2 shows where the correct
solutions are found. A run with small population
would find the solution in later generations and as the
size of population increases the correct solutions are
found in the early generations.

Number of Generation

Size of Population

Figure 3.3: Correct solutions in generation versus
population size.

The overall results are depicted in Figure 3.4 The
average best fitness increases as the number of
generation increases but at the generation 50, the
fitness value has decreased. This is because of
crossover operation that causes the value in the
column set or sub block become duplicates again.
This is clearly the results of genetic operators used
such as crossover and mutation.

The results are stated as follows:

Table 3.2: The results obtained for popsize=500

No. Of Generations Best Fitness
1 0.088
10 0.17
20 0.303
50 0.679
80 0.493
83 1.0

0
1
2
3
4
5
6
7

10 50 100 300 500 1000

Time Taken

0

2000

4000

6000

8000

10000

12000

10 50 100 300 500 1000

Correct Solution

647

Number of Generations

Figure 3.4: The best fitness versus number of
generations.

4. DISCUSSION

4.1. Population Size
An important choice of population size for the
Genetic Algorithms must be carefully considered.
This is because it will affect the result of the problem.
A small population size will make it converge
quickly and the result may not be optimized, but if
the size it too big it may cause the process to be too
long.

4.2. Fitness Function

A fitness function is a particular type of objective
function that measures the optimality of a solution in
a genetic algorithm so that particular chromosome
may be ranked against all the other chromosomes. An
ideal fitness function correlates closely with the
algorithm's goal, and yet may be computed quickly.
Speed of execution is very important, as a typical
genetic algorithm must be iterated many times in
order to produce a correct result. The fitness value in
this project is evaluated by using some equations
based on the constraints of Sudoku Puzzle.

4.3. Selection
The selection of individuals to participate in the
operation of crossover and mutation on the basis of
their fitness is an essential aspect of this study. When
an individual is selected on the basis of its fitness to
be copied into the next generation of the population,
the effect is that the new generation contains the
characteristics it represents. The suitable methods for
selection process also need to be chosen. As for this
study, a chromosome is ranked based on their fitness
value before it will be selected to participate in the
next operation.

4.4. Crossover Rate
The crossover operator performs the mating of two
selected parent chromosomes to produce a better
generation of chromosomes. In this study, crossover
operation has caused the fitness to become far from
targeted goal. So low crossover rate is chosen as high
crossover will make the chromosome contain the
duplicate value in the sub block and column set. A
crossover rate of 0.7 is considered as a parameter
value for this system.

4.5. Mutation Rate
In this study, a high mutation rate is chosen because
mutation operation is more helpful for the system to
find the correct solution. A mutation rate of 0.1 is
considered as a parameter value for this study.

5. CONCLUSION
Using Genetic Algorithm technique to solve

constrained satisfaction problem, such as this one, is
indeed a challenging problem both technically as well
as theoretically. There are many enhancements that
can be made to the current research. This research
can also be used to solve similar constrained
satisfaction problems. Hopefully it can be used as a
milestone for further studies and research. The choice
of using games as the platform to study the insights
of GA has shown a worthy experience. The multi-
objectivity in games parameter fits the versatility of
GA in solving such problems.

REFERENCES

Ardel, D.H. (1994). TOPE and magic squares, a

simple GA approach to combinatorial
optimization. In J.R. Koza (ed.) Genetic
Algorithms , Stanford bookstore, Stanford, CA.

 Bäck, T. (1996). Evolutionary algorithms in theory
and practice: evolution strategies, evolutionary
programming, genetic algorithms: Oxford
University Press, USA.

De Jong , K. A.(1975). Analysis of the Behavior of a
class of genetic adaptive systems, PhD
Dissertation, University of Michigan, Ann Arbor,
AAC 76-09381.

Edgington, J. (2006). Solving Sudoku
Puzzles,Department of Computer Science,
University of Denver.

Ghoshray, S.,Yen, K. K. (2004). More Efficient
Genetic Algorithm For Solving Optimization
Problems. Department of Electrical and
Computer Engineering, Florida International
University.

Gold, M. (2005). Using genetic algorithms to come up
with Sudoku puzzles: Sep.

Goldberg, D. (1989). Genetic Algorithms in and
Optimization: Addison-Wesley.

Grefenstette,J. J. .(1986).Optimization of Control
Parameters for Genetic Algorithms, IEEE Trans.

Fitness Value

0

0.2

0.4

0.6

0.8

1

1.2

1 10 20 50 80 83

Best Fitness

648

On Systems, Man, and Cybernetics, Vol. SMC-
16,No.1.

Jason Hoelscher-Obermaier, (2008). Genetic
Algorithm. Universit¨at Regensburg.

Joachim, S. (2004). Introduction to Genetic
Algorithms. Brainware GmbH, Berlin, Brainware
Ltd., London.

Mantere, T., & Koljonen, J. (2006). Solving and rating
Sudoku puzzles with genetic algorithms. New
Developments in Artificial Intelligence and the
Semantic Web, 86.

Moraglio, A., Togelius, J., & Lucas, S. (2005).
Product geometric crossover for the Sudoku
puzzle.

Moraglio, A., & Togelius, J. (2007). Geometric
Particle Swarm Optimization for the Sudoku
puzzle.

Runarsson, T., & Yao, X. (2000). Stochastic ranking
for constrained evolutionary optimization. IEEE
Transactions on Evolutionary Computation, 4(3),
284-294.

Tristan, C. (2004). A search based Sudoku solver.
Labo IA Dept. Informatique Universit´e Paris 8,
93526, Saint-Denis, France.

