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ABSTRACT 

 
Population size is an important component in genetic 
algorithms (GAs).The concept of population in GAs 
has contributed to a unique searching strategy which  
empower its search process through the massive 
volume of the data in a population. The purpose of 
this study is to see how the impact of population size 
on genetic algorithms in producing correct solution 
for a Sudoku puzzle. Sudoku is a Japanese number 
puzzle game that has become a worldwide 
phenomenon. The puzzle involves completing a grid 
of cells by assigning a single number to each cell. 
The numbers in a row or a column must consist of 
any one of the numbers from 1 to 9; no repetition is 
allowed. GA will be used to generate the correct 
solution of Sudoku puzzles. The mechanism to 
produce legal Sudoku grid will follow the 
requirements needed and meet all the constraints. A 
fitness function is designed to evaluate legal grids 
and GA will be tested for performance and time 
efficiency. The challenges lie on how GA will 
represent a Sudoku grid in the process and the 
effectiveness of its operators such as crossover and 
mutation. The results show how different population 
size can produce different solutions. The best 
performance  is observed at 500 population size. The 
paper will conclude with an insight of this value and 
its significance to the knowledge acquisition in GA 
paradigm.. 
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1. INTRODUCTION 
 
Most researchers (Goldberg,1989;Bäck, 1996;De 
Jong, 1975) have  agreed  that the performance of 
GAs is dependent upon components such as the 
probability of the operators used, the operators 
themselves, and the diversification of the population. 
The common practice is that the parameters are set at 
the beginning and the process will run according to 
these parameters until a good solution is found. 
However, in most cases GAs fail to produce good 
results in an acceptable time frame.  Since GA is 

modeled after the evolution process, the longer the  
runs take place, the results will get better.  
   Previous researchers have suggested the values  for 
GAs parameters (such population size, crossover rate 
and mutation rate )that worked well in their research( 
De Jong ,1975; Grefenstette ,1986; Goldberg, 1989). 
The main drawback is that the problem being solved 
might be different and the solutions found maybe 
well below the optimum. The importance of the 
population size is due to the fact that it represents the 
volume of the candidate solutions that are being 
considered in the search. When the population size is 
controlled, the search space will be limited or 
extended. One of the components in the genetic 
process that will be affected by adjusting the 
population size is the selective pressure. If the 
population size is too large, the selective pressure 
will be reduced considerably and this will make the 
search ineffective. On the other hand if the 
population size is too small, selective pressure will be 
strong and this exploits certain individuals that will 
result in a premature convergence. The second 
component that is affected by changing population 
size is the population diversity. Whitley concluded 
that  when the population is small, the search focuses 
on the top individuals in the population; as a result 
population diversity is lost. Therefore, it is clear that 
population provokes certain features whenever the 
population size is different. Exploitation of top 
individuals will occur if population size is small and 
exploration of new dimensions will take place if 
population size is large. In order to take advantage of 
these features, we propose the population size to be 
adapted as the GA runs. 

2. METHODOLOGY 

2.1. The Method 
Genetic Algorithm is used in this study to 
generate the correct solution of Sudoku 
puzzles. The type of encoding in GA that 
has been used is permutation encoding. 
In permutation encoding, every chromosome 
is a string of numbers, which represents 
number in a sequence.  
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2.2. Initial Population 
In this study, an integer array of 81 numbers is 
generated randomly to represents a Sudoku grid and a 
chromosome(Mantere & Koljonen, 2006). The array 
is divided into nine sub-blocks of nine numbers 
corresponding to the 3×3 sub squares from left to 
right and from top to bottom. At the starting of 
development process, the population size is set to 100 
. But the experiments indicated that  a bigger 
population size is better because this population size 
can find a correct solution in lowest number of 
generation. Figure 3.3 show the example of Sudoku 
grids and the integer array of 81 numbers that 
represent the chromosome. 
 
 Individual: 
2  3  6  8  5  4  9  7  1  
5  8  9  2  7  1  6  4  3  
4  1  7  3  6  9  8  2  5  
4  6  8  7  2  3  1  9  5  
1  2  5  9  6  4  7  3  8  
7  9  3  5  8  1  6  4  2  
6  8  7  5  4  9  3  1  2  
3  9  2  8  1  7  4  5  6  
1  5  4  2  3  6  9  7  8  

 
  
 
 
Individual: 

 
 
 
 
 
 
 

 
Figure 3.3: An example of Sudoku grid and the 

representation of Sudoku puzzles in GA. One possible 
solution (individual) is an array of 81 numbers that is 

divided into nine sub blocks of nine numbers. 
 

2.3. Fitness Value 
The fitness value will be evaluated by using some 
equations. Each equation represents the constraints of 
Sudoku Puzzle. Fitness is scaled between 0 and 1; 
where a value 1 represents a perfect solution. The 
descriptions of each equation are as follows (Mantere 
& Koljonen, 2006; Moraglio & Togelius, 2007;Gold, 
2005): 

 
1) The first equation (   is to count the duplicate 

number in each sub block. It is required that each 
sub block must have all elements from set A 
without repetition where A = {1,2,3,4,5,6,7,8,9}. 

 

 0; 
   

 
2) The second equation (   is to count the 

duplicate number in each row and column set. It 
is required that each row and column must have 
all elements from set A without repetition where 
A = {1,2,3,4,5,6,7,8,9}.  
 

 0; 
   

 
 

3) The third equation (   requires that row or 
column sums must be equal to 45. 

 
 

| ∑ , |, .     
 
4) The fourth equation (  requires that each row 

and column product should be equal to 9!. 
 

 | ∏ ,,

!
     

 
5) The last equation is to calculate the overall 

fitness value of the initial population.  
                               

∑ /
  ;(where n=4 ,n is number of 

constraints) 
  

After the fitness is calculated, GA will rank the 
solution accordingly. If a perfect solution is found 
(where fitness value is 1), the process will be 
terminated. If not the process will continue until GA 
reach a certain number of generations. 

2.4. Selection 
In the selection process, an individual is 
probabilistically selected from the initial population 
on the basis of its fitness and the selected individual 
is then copied into the next generation of the 
population without any change. The selection method 
that has been used in this study is rank selection 
which means all the population will be rank again 
each other based on their fitness. The population with 
the fitness value is close to 1 will be in the top 
ranking and so on (Joachim, 2004; Goldberg,1989). 
 

2.5. Crossover 
The genetic operation of crossover allows the 
creation of new individuals which accounts for the 
generation of new points in the search space to be 
tested. Crossover starts with two parents 
independently selected probabilistically from the 
population on the basis of their fitness (Joachim, 
2004; Goldberg,1989). The crossover rate was fixed 
at 0.7 at the onset of this study. 
 

2.6. Mutation 

 
236854971 

 
589271643 

 
417369825 

   
 
468723195 

 
125964738 

 
793581642 

   
 
687549312 

 
392817456 

 
154236978 
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The operation of mutation begins with the 
probabilistic selection of an individual from the 
population on the basis of its fitness. When mutation 
process is applied, each value in every column and 
sub block will be checked. If duplicate value is 
found, that value will be swap with other value in that 
row. This operation is done sequentially. The altered 
individual is then copied into the next generation of 
the population. In this case, the mutations are applied 
only inside a sub-block. In the first development of 
this project, mutation rate has been set to 0.1. The 
result shows that mutation operation has helped the 
population fitness to increase. (Joachim, 2004; 
Goldberg,1989) 
 

2.7. New Population 
After the process of reproduction, crossover, and 
mutation is done, the new population is derived and 
the process will be continued to calculate the fitness 
value. All of the process will be repeated  until the 
best solution or the correct answer is found.   

3. THE RESULTS 
 
Table 3.1 shows the results that have been obtained.. 
The GA is run with several different population sizes. 
The experiments are done a few times for each 
population and the  means of the results are taken. In 
order to illustrate the findings more clearly the graphs 
are produced.  
 
Table 3.1: The results obtained from the experiment. 
 
 No.  of 
Population 

Time 
(sec) 

No.  of 
Generation 

No.  of 
Crossover 
Applied 

No.  of 
Mutation 
Applied 

10 2.692 11337 1131 7934 
50 1.255 1274 128 881 
100 1.568 784 80 549 
300 1.104 156 13 129 
500 0.995 88 9 58 
1000 6.499 224 21 155 

 

3.1. Time taken to find correct solution 
The graph in Figure 3.1 shows the time taken by the 
GA to find the correct Sudoku grid in different 
population size. As the population grew, the GA was 
able to find the correct solution in lesser time. 
However, when the population was at 1000, the time 
taken to find good solution had dramatically 
increased.  

 
Time to Complete (sec) 

 
 

 
 

 
 

 
 

Size of Population 
 

Figure 3.1: The time versus population size. 

3.2. Where the correct solutions are found 
The graph in Figure 3.2 shows where the correct 
solutions are found. A run with small population 
would find the solution in later generations and as the 
size of population increases the correct solutions are 
found in the early generations. 
 

Number of Generation 
 

 

 
 

 
 

 

 
Size of Population 

Figure 3.3: Correct solutions in generation versus 
population size. 

 
The overall results are depicted in Figure 3.4 The 
average best fitness increases as the number of 
generation increases but at the generation 50, the 
fitness value has decreased. This is because of 
crossover operation that causes the value in the 
column set or sub block become duplicates again. 
This is clearly the results of genetic operators used 
such as crossover and mutation.   
 
 
The results are stated as follows: 
 

Table 3.2: The results obtained for popsize=500 
 
No. Of Generations  Best Fitness 
1 0.088 
10 0.17 
20 0.303 
50 0.679 
80 0.493 
83 1.0 
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Figure 3.4: The best fitness versus number of 
generations. 

 

4. DISCUSSION 

4.1. Population Size 
An important choice of population size for the 
Genetic Algorithms must be carefully considered. 
This is because it will affect the result of the problem. 
A small population size will make it converge 
quickly and the result may not be optimized, but if 
the size it too big it may cause the process to be too 
long.  

4.2. Fitness Function 

A fitness function is a particular type of objective 
function that measures the optimality of a solution in 
a genetic algorithm so that particular chromosome 
may be ranked against all the other chromosomes. An 
ideal fitness function correlates closely with the 
algorithm's goal, and yet may be computed quickly. 
Speed of execution is very important, as a typical 
genetic algorithm must be iterated many times in 
order to produce a correct result. The fitness value in 
this project is evaluated by using some equations 
based on the constraints of Sudoku Puzzle. 

4.3. Selection 
The selection of individuals to participate in the 
operation of crossover and mutation on the basis of 
their fitness is an essential aspect of this study. When 
an individual is selected on the basis of its fitness to 
be copied into the next generation of the population, 
the effect is that the new generation contains the 
characteristics it represents.  The suitable methods for 
selection process also need to be chosen. As for this 
study, a chromosome is ranked based on their fitness 
value before it will be selected to participate in the 
next operation. 

4.4. Crossover Rate 
The crossover operator performs the mating of two 
selected parent chromosomes to produce a better 
generation of chromosomes. In this study, crossover 
operation has caused the fitness to become far from 
targeted goal. So low crossover rate is chosen as high 
crossover will make the chromosome contain the 
duplicate value in the sub block and column set. A 
crossover rate of 0.7 is considered as a parameter 
value for this system. 

4.5. Mutation Rate 
In this study, a high mutation rate is chosen because 
mutation operation is more helpful for the system to 
find the correct solution. A mutation rate of 0.1 is 
considered as a parameter value for this study. 

5. CONCLUSION 
Using Genetic Algorithm technique to solve 

constrained satisfaction problem, such as this one, is 
indeed a challenging problem both technically as well 
as theoretically. There are many enhancements that 
can be made to the current research. This research 
can also be used to solve similar constrained 
satisfaction problems. Hopefully it can be used as a 
milestone for further studies and research. The choice 
of using games as the platform to study the insights 
of GA has shown a worthy experience. The multi-
objectivity in games parameter fits the versatility of 
GA in solving such problems. 
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