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ABSTRACT 
 

Multiple ant colonies optimization is an extension of the 
Ant Colony Optimization framework It offers a good 
opportunity to improve the ant colony optimization 
algorithms by encouraging the exploration of a wide 
area of the search space without losing the chance of 
exploiting the history of the search. This paper proposes 
a new multiple ant colonies optimization algorithm that 
is based on ant colony system and utilizes average 
pheromone evaluation mechanism. The new algorithm 
divides the ants’ populations into multiple ant colonies 
and can be used to tackle large volume combinatorial 
optimization problems effectively. Computational tests 
show promises of the new algorithm. 
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1.0 INTRODUCTION 
 
Ant colony optimization (ACO) is a recent family 
member of the meta-heuristic algorithms  and can be used 
to solve complex optimization problems with few 
modifications by adding problem-dependent heuristics. 
ACO is a biological inspiration simulating the ability of 
real ant colony of finding the shortest path between the 
nest and food source. It is one of the successful 
applications of swarm intelligence which is the field of 
artificial intelligence that study the intelligent behavior 
of groups rather than of individuals such as the behavior 
of natural system of social insects like ants, bees, wasps, 
and termites. Swarm intelligence uses stigmergy which is 
a form of indirect communication through the 
environment.  
 
The class of complex optimization problems called 
combinatorial optimization problems  are found in many 
areas of research and development. Traveling Salesman 
Problem (TSP), Quadratic Assignment Problem (QAP), 

Vehicle Routing Problem (VRP), Graph Coloring 
Problem (GCP), Sequential Ordering Problem (SOP), 
Job Secluding Problem (JSP) and Network Routing 
Problem (NRP) are some examples of these problems. 
Combinatorial optimization problems  arise when the task 
is to find the best out of many possible solutions to a 
given problem, provided that a clear notion of solution 
quality exists. In contrast to other optimization problems, 
combinatorial problems have a finite number of 
candidate solutions. Therefore, an obvious way to solve 
these problems is to enumerate all candidate solutions by 
comparing them against each other. Unfortunately, for 
most interesting combinatorial optimization problems, 
this approach proves to be impractical since the number 
of candidate solutions is simply too large. The only way 
to tackle the problems is to apply heuristic search that 
delivers no guarantee of finding the optimum solution 
(Blum & Roli, 2003; Dorigo et al., 2006). 

  
The main element of ACO success is the use of a 
combination of priori information (heuristics) about the 
quality of candidate solutions (also called greedy 
strategy) and posteriori information (pheromone) about 
the goodness of the previously obtained solutions (also 
called positive feedback or autocatalytic process). This 
seems reasonable since many researches that study the 
characteristics of some well known optimization 
problems show that there is a correlation between the 
solution quality and the distance from the optimal 
solution (Blum & Dorigo, 2005; Dorigi & Stützle, 2002). 
Several well known ACO examples are Ant System 
(Dorigo et al., 1996), Ant Colony System (Dorigo & 
Gambardella, 1996; 1997), Max-Min Ant System 
(Stützle & Hoos, 2000), Ranked Ant System 
(Bullnheimer et al., 1999) and Best Worst Ant System 
(Gordon et al., 2002).  These algorithms show interesting 
performance and are competitive with other state of the 
art optimization methods. However, more research work 
is needed to enhance the ACO algorithms performance 
especially on large volume of combinatorial problems. 
Increasing the number of ants used to tackle a large 
problem almost yield to a worse algorithm performance. 
The key element is the organization of the ants’ 
population and the coordination of their works in such a 
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way that yields to a good exploration of the large search 
space in a strong coupling with the exploitation of the 
search history.  
 
In this paper, a new ACO meta-heuristic algorithm is 
proposed. The new algorithm uses multiple ant colonies 
and can be efficiently used to tackle large optimization 
problems. The rest of this paper is organized as follows. 
Section 2 describes the ant colony system. MACO 
related works are reviewed in section 3. Section 4 
proposes  the new algorithm. The computational results 
of the algorithm testing are presented in section 5 and 
Section 6 presents the conclusion and suggested future 
work. 
 
2.0 ANT COLONY SYSTEM 
 
Ant Colony System (ACS) is one of best performing 
ACO algorithms and has given good results for TSP and 
some other problems (Blum & Roli, 2003; Dorigo & 
Gambardella, 1996; 1997].   Initially, artificial ants are 
placed randomly on the nodes of the problem graph. The 
solution construction in ACS is as follows: In each 
algorithm’s iteration, each ant computes the probability 
of moving to a new city not visited yet using a pseudo-
random proportional rule. This  rule is a trade-off 
between exploration and exploitation. An ant either with 
probability q0 exploit the available information about 
previous good solutions or with probability (1-q0) 
explore new areas of the solution space focusing on 
shorter edges with pheromone rate. An ant k  located at 
node i will choose the new node j to move to according 
to the following.  
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Pij is the pheromone trail on connection between node i 

and j and Hij is the problem dependent heuristic. k
iN is 

the set of  remaining nodes to be visited by the kth ant 
located at node I. ß is a parameter that determines the 
relative importance of pheromone versus heuristic, q is a 
random variable distributed in [0, 1] and q0 is a 
parameter and  0 = q0  =1. S is a random variable selected 
according to the following probabilistic rule . 
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After all artificial ants have completed their tours, only 
the ant that finds the global best tour (the so far best tour 
obtained from the beginning of the algorithm’s 
execution) reinforces the pheromone trails on the edges 
belong to its tour. The amount of deposited pheromone is 

inversely proportional to the length of the global best 
tour. This is called global pheromone update and given 
by: 
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Where 
bs

ijP∆ is the pheromone quantity added to the 

connection (i, j) that belongs to best solution bsL and 
given by: 
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s  is the trail evaporation such that (1- s) represents the 
pheromone persistence. This parameter is used to avoid 
unlimited accumulation of pheromone trails and allows 
the algorithm to forget previously done bad choices. 

 
The global pheromone update will increases the 
probability for other ants to use the short edges that have 
greater amount of pheromone trail and in turn increase 
the probability to build better solutions.  The pheromone 
evaporation mechanism is applied on only the edges that 
have been used by an ant. Every time an ant uses an 
edge, it decreases the pheromone intensity on this  edge. 
This is called local pheromone update and given by: 
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Where γ  is another pheromone evaporation parameter 
and P0 is the initial pheromone value. Local pheromone 
update encourages  the exploration of new areas of the 
search space by reducing the importance of the visited 
edges. While, g lobal pheromone update encourages the 
exploitation of previously good solutions by giving extra 
weight to the edges of global best solutions. 
 
3.0 MULTIPLE ANT COLONY RELATED  
      WORK 
 
Multiple ant colony optimization (MACO) is an 
extension of the ACO framework where a number of ant 
colonies working together to solve some combinatorial 
optimization problem. Varela and Sinclair (1999) 
adopted MACO for the problem of virtual wavelength 
path routing and wavelength allocation. Repulsion was 
proposed as one way of attraction between colonies 
which means that ants repelled by the pheromone of 
other colonies. In this way, an ant prefers to choose path 
with high concentration of its own colony’s pheromone 
and with no or lesser amount of other colonies’ 
pheromone. This gives a higher opportunity to explore a 
wide area of the search space. In their proposed 
algorithm, the pheromone attraction is used the same 
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way like other routing algorithms, while the repulsion 
increases the chance of distributing different wavelength 
on different links. They used two parameters to weight 
the degree of the importance of attraction and repulsion. 
 
Gambardella et al. (1999) proposed Multiple ACS 
(MACS) for the vehicle routing problem with time 
windows. MACS has been designed to solve vehicle 
routing problems with two objective functions which are 
the minimization of the number of tours (or vehicles) and 
the minimization of the total travel time, where number 
of tours minimization takes precedence over travel time 
minimization. The basic idea is to coordinate the activity 
of different ant colonies, each of them optimizing a 
different objective. These colonies work by using 
independent pheromone trails but they collaborate by 
exchanging information. The results of this approach 
have shown to be competitive with the best existing 
methods both in terms of solution quality and 
computation time.  
 
The same approach of MACS has been used by Jong and 
Wiering (2001) to tackle Bus-stop Allocation Problem 
(BAP) with n bus-stops and m bus-lines. A solution is to 
construct m bus-lines, each one consisting of a sequence 
of bus-stops that minimizes the average travel time. The 
results of the new algorithm outperformed the results 
obtained from greedy algorithm and simulated annealing.  

 
A MACO algorithm based on colony level interaction 
has been proposed by Kawamura et al. (2000). The 
algorithm work based on ant system and used large 
number of parameters a that must be set in advance. 
These parameters determine the effect of each colony to 
all other colonies and they organized as an array of size 
M×M, where M is the number of colonies. No specific 
way of choosing this large number of parameters was 
shown. The effect of a colony towards another colony 
may be positive or negative.  Different colony structures 
were tested with some parameter setting. The algorithm 
tested on some TSP instances and the results were better 
than AS results but did not compare with the best 
performing ACO algorithm like ACS and MMAS.  

 
Sim and Sun (2002; 2003) propose some conceptual 
ideas of MACO approach as a new ACO framework for 
network routing problem. The authors believe that using 
multiple ant colonies to explore the network offers the 
opportunity to find new and better paths and reduces the 
chance of stagnation. However, the authors think that 
this approach offers a new direction for ant-based 
optimization in general and for network routing problem 
in specific. 
  
4.0 THE PROPOSED MULTIPLE ANT  
      COLONY ALGORITHM 
 
The proposed algorithm is based on ACS. Each colony 
has its own pheromone that is used as an interaction 
between the ants of the same colony. The interaction 

between ant colonies can be organized in different terms. 
Average pheromone interaction is proposed in this paper. 
The pheromone intensity of an edge is calculated as an 
average of the pheromone of all colonies on this edge. 
This means that an ant will choose the new edge base on 
the average of the experiences of the ants of all colonies 
that used this edge in the past. The new MACO is 
referred hereafter as MACO-AVG. 

 
The MACO-AVG algorithm is described as follows. M 
colonies of m ants each are working together to solve 
some combinatorial problem. The probabilistic decision 
of the ant k  belongs to the colony v to move from node i 
to node j is an extension of equations (1) and (2) and 
defined as: 
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 The random variable S is selected according to the 

following probabilistic rule: 
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Where kv
iN is the set of remaining nodes to be visited by 

the kth ant of colony v located at node i and 
v

ijP is the 

pheromone of colony v on the edge (i,j). The pheromone 

evaluation function )( ijPf  on the edge (i, j) defined as 

the average of the pheromone of all colonies and is given 
by: 
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After all ants of all colonies complete their tours (i.e one 
algorithm iteration), the ant that finds the so far best 
solution in its colony will be allowed to deposit an 
amount of the colony’s pheromone on the edges of its 
tour according to the following global pheromone 
update:  
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Where 
bsv

ijP .∆ is the pheromone quantity added to the 

connection (i, j) belonging to the best solution of  vth 

colony bsvL . and is given by: 
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Local pheromone update is applied by each ant on the 
visited edges. It is very important rule as it is performed 
during the solution construction this helps to yield 
different pheromone averages for the same edge in the 
same iteration at different solution construction steps and 
it is given by: 

0)1( pPP v
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5.0 EXPERIMENTAL RESULT 
 
Full implementation of the MACO-AVG and the original 
ACS was developed along with this research work using 
visual C++ under windows XP. MACO-AVG has been 
tested using two TSP benchmark instance which are 
kroA100 and lin318 taken from TSP library. Given n 
cities and distances between them, TSP is a problem of 
finding minimal length of closed tour that visit each city 
only once. The heuristic function is the inverse of the 
distance, i.e., Hij=1/dij. Number of experiments was run 
using 2, 3, 4 and 5 colonies. For each experiment 
different setting of ß is used to demonstrate the algorithm 
robustness.  
 
The results are averaged over 20 trials  with 3000 and 
10000 iterations per trial for kroA100 and lin318 
respectively. Table 1 and Table  2 show the testing results 
of the experiments run with kroA100 and lin318 
respectively. The symbol s next to the number of 
colonies refers that all colonies have the same value of ß 
which is equal to 2. Different values of ß are also tested 
and referred to by the symbol d next to the number of 
colonies. In this case ß=2 is set for the first colony and 
ß=3 for the second one and so on. Other parameter 
setting are s = ? = 0.1 and q0 = 0.9.  
 
MACO-AVG outperforms the original ACS one colony 
algorithm with the same number of ants. The 
performance of ACS declines as the number of ants 
increases. The problem was in the coordination of ants’ 
population work to make use of the increment in the 
ants’ number. This drawback has been overcome by the 
use of more than one ant colony and the use of an 
appropriate pheromone evaluation mechanism.  
 

 
Previous studies have shown that ACS gives the best 
result when using ten ants. Table 3 shows an additional 
experiment ran with ACS on Lin318 using 10 ants for 20 
trials and 500000 iterations per trial. The overall average 
was 43420. ACS requires 20 trials*10 ants *500000 
iterations=100,000,000 construction steps to reach this 
result. A similar result, which is 43421.96, was obtained 

using MACO-AVG with 4 colonies of 10 ants each 
working for 20 trials of 10000 iterations each. MACO-
AVG requires 20 trials *4 colonies *10 ants *10000 
iterations =8,000,000 construction steps. The superior of 
MACO-AVG in term of construction steps required to 
reach the same solution is obvious as MACO-AVG was 
100/8=12.5 times faster than ACS with the same setting.  
 
6.0 CONCLUSION AND FUTURE WORK 
 
The proposed algorithm divides the ants’ population into 
multiple colonies and effectively coordinates their works. 
An average pheromone evaluation function is used in the 
process of the ant’s decision making. The results show 
that the proposed algorithm outperforms the ACS 
algorithm with similar number of ants. Future work is the 
use of the proposed algorithmic framework on some 
other combinatorial optimization problems .  New 
pheromone evaluation mechanism is another possible 
future direction. Another interesting future work is in the 
global pheromone update mechanism. In this paper the 
global best solution of each colony is considered.  It is 
interesting to test the case where some colonies consider 
global best solution while others consider iteration best 
solution in the global pheromone update mechanism. 
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Table 1: KroA100 Results 
 

           ACS MACO-AVG 
Colony/ 

ant 
Overall  
average 

Std.  
Dev. 

Colony/ 
ant 

Overall  
average 

Std.  
Dev. 

2s/10 21592.70 257.15 1/20 21675.40 235.17 
2d/10 21486.00 211.50 
3s/10 21467.90 209.80 1/30 21535.65 216.86 
3d/10 21447.00 166.00 
4s/10 21413.75 171.00 1/40 21675.40 255.96 
4d/10 21451.00 136.00 
5s/10 21377.30 131.00 1/50 21950.85 309.33 
5d/10 21454.40 88.2.00 

 
 

Table 2: Lin318 Results 
 

ACS MACO-AVG 
Colony/ 

ant 
Overall  
average 

Std.  
Dev. 

Colony/ 
ant 

Overall  
average 

Std.  
Dev. 

2s/10 44460.35 499.50 1/20 46136.35 677.96 
2d/10 44073.92 375.38 
3s/10 44001.95 456.97 1/30 46995.85 1143.19 
3d/10 43658.35 337.03 
4s/10 43896.47 332.37 1/40 47320.00 662.25 
4d/10 43421.96 325.58 
5s/10 44702.8 700.16 1/50 47617.10 805.20 
5d/10 43421.96 325.58 
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Table 3: Lin318 ACS and MACO-AVG Construction Steps Comparison 

 
Algorithm Colony/ 

ant 
Trial/ 

iteration 
Overall 
average 

Construction  
Steps  

ACS 1/10 20/500000 43420.00 100,000,000 
MACO 4d/10 20/10000 43421.96 8,000,000 

 
 
 


