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ABSTRACT 

 
This paper aims to present an automated tool that has 
been developed to assess pair programming program 
quality. The tool known as Java Quality Measurement 
Tool or JaQMeT is used to assess specifically Java 
program quality. There are two program quality factors 
that can be assessed which are correctness and 
complexity. Pair programming program will be graded 
using JaQMeT. Then the results will be used to evaluate 
the effectiveness of pair programming. JaQMeT is only at 
its initial stage. It is an initial effort to facilitate the 
lecturers to reduce workload on grading programming 
assignment and specifically to assess pair programming 
program quality. Although JaQMeT has its several 
limitation but it is hoped that JaQMeT can be extended by 
using web-based technology and capable to check others 
program quality.  
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1.0 INTRODUCTION 

Pair programming is a kind of collaborative programming 
where two people work side-by-side on design, 
implementation, and testing with one computer (Beck, 
2000). William, Kessler, Cunningham & Jeffries (2000), 
describes pair programming process as follows: 

“In pair-programming, two programmers jointly produce 
one artifact (design, algorithm, code, etc.).One partner is 
the “driver” and has control of the 
pencil/mouse/keyboard and is writing the design or code. 
The other partner continuously and actively observes the 
work of the driver – watching for defects, thinking of 
alternatives, looking up resources, and considering 
strategic implications of the work at hand. The roles of 
driver and observer are deliberately switched between the 
pair periodically.” 

Pair programming is one of the core practices in Extreme 
Programming. It is claimed that pair programming can 
promote team work and thus produce high quality 
software (McDowell, Werner, Bullock & Fernald, 2002;  
DeClue, 2003; William & Kessler, 2003; Hanks, 
McDowell, Draper & Krnjajic, 2004; Xu & Rajlich, 
2005). 

In order to assess program quality, there is a need to 
develop a tool. The tool can assist the programmer 
specifically to automate the process of evaluating 
program quality. On the other hand, the tool can also 
reduce workload of teaching staff or lecturer in grading 
the programming assignment.  
 
Pressman (2001) defined program quality as conformance 
to explicitly state functional and performance 
requirement, explicitly documented development 
standard, and implicit characteristic that are expected of 
all developed program. There are various quality factors 
in order to assess program quality such as correctness, 
complexity, maintainability, portability, and others. In this 
study two main quality factors will be used which are 
correctness and complexity. Correctness is a degree to 
which the program performs its required function 
(Pressman, 2001). Most correctness assessment is 
empirical and based on checking a program’s output from 
inputs. If the program meet its requirement, formally a 
program is correct. Correctness is a straightforward 
criterion to formulate the program quality. Meanwhile, 
software complexity metrics is  developed to identify parts 
of program that are likely to be difficult to test, 
understand, or error-prone. 
Most studies on pair programming investigate an impact 
of pair programming on program quality and then provide 
empirical evidence on the effectiveness of the practices. 
However the main aim of this study is to develop an 
automated tool to assess pair programming program 
quality. The tool will measure two main quality factors 
which are correctness and complexity of the program. 
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2.0  RELATED WORKS ON PAIR 

PROGRAMMING QUALITY TOOL 

In this section, related works of the study which includes 
pair programming quality tool will be described.  A 
summary of pair programming literature which focuses on 
program quality is given in Table 1: Summary of 
Literature. Most of the literatures were obtained from the 
ACM and IEEE databases. 

Table 1: Summary of Literature 
 

Author(s) Quality 
Metrics  

Method to 
measure 
program 
quality 

Using 
Automated 

Tool? 

Williams et 
al. (2000) 

Functionality Using 
automated 
testing tool 
that executed 
by impartial 
teaching 
assistant 

Yes 

Ciolkowski 
& 
Schlemmer 
(2002) 

Complexity 
§ Lines of 

Codes 
(LOC)  

§ Comment 
Ratio  

§ Couplin g 
Factor 

Using 
evaluation 
tool to 
compute 
worst-case 
complexity of 
system 

Yes 

McDowell, 
Werner, 
Bullock & 
Fernland 
(2003) 

Functionality 
Readability 

Using 
student’s 
score on 
graded 
programming 
assignment 

No 

DeClue 
(2003) 

Functionality Using 
student’s 
score on 
graded 
programming 
assignment 
and 
qualitative 
survey 

No 

Gehringer 
(2003) 

Functionality Using 
student’s 
score on 
graded 
programming 
assignment 

No 

McDowell, 
Hanks & 
Werner 
(2003) 

Functionality 
Readability 
 
 
 
 
 

Using 
student’s 
score on 
graded 
programming 
assignment 
and 
qualitative 
assessment 
which include 
functionality, 
style and 
holistic 

No 

Hanks et al. 
(2004) 

Complexity Using 
JavaNCSS to 
calculate 
source code 
metric of 

Yes 

program 
Xu & Rajlich 
(2005) 

Lines of 
Code (LOC) 
Readability 

Using 
qualitative 
assessment 

No 

Arisholm, 
Gallis, Dyba 
& Sjoberg 
(2007) 

Correctness Reviewed by 
two 
independent 
senior 
consultants 
by using the 
following 
tool; 
Correctness 
analysis tool, 
Each solution 
tested using 
automated 
test scripts 
and final 
grading using 
web-based 
grading tool 

Yes 

 
There are various methods to measure program quality. 
Some studies that focus on functionality quality metrics 
have used student’s score on graded programming 
assignment to assess pair programming program quality 
(McDowell, et al., 2003; DeClue, 2003; Gehringer, 2003). 
In contrast, Williams et al. (2000) have used automated 
tool to assess functionality quality metric in their study. 
 
Ciolkowski & Schlemmer (2002) and Hanks et al. (2004) 
have performed pair programming experiments by using 
an automated tool to compute complexity of the student’s 
pair programming program. In addition, Arisholm et al. 
(2007) have assessed correctness of quality program using 
correctness analysis tool, automated test scripts and 
automated web-based grading tool. Besides, another 
method to measure pair programming quality in terms of 
readability and lines of codes is by using qualitative 
assessment (McDowell, Hanks & Werner, 2003; Xu & 
Rajlich, 2005). 
 
3.0 DESIGN OF JaQMeT 

An automated tool which known as Java Quality 
Measurement Tool (JaQMeT) has been developed to 
assist teaching staff or lecturer to assess Java program 
quality. JaQMeT is able to assess two program quality 
factors which are correctness and complexity. It is 
designed based on the integration of two studies proposed 
by Rohaida, Fazilah & Mazni (2004) and Mawarny & 
Rohaida (2005). Proper enhancements and modifications 
had been made to fit with current requirements.  

Two program quality factors were chosen to assess the 
quality of student’s program. These two types of program 
quality were adequate to assess program quality that 
applied basic Java programming concepts. Apart from 
that JaQMet is used as quality measurement tool to assess 
program quality produced by student that applied pair 
programming practices. Figure 1 depicts a process of 
quality assessment in JaQMeT. 
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Figure 1: Quality Assessment Process of JaQMeT 
 
As shown in Figure 1, the process of measuring program 
complexity is done by implementing static analysis to the 
student’s program and program schema. Then, both 
programs are analyzed by comparing their complexity 
values to see their similarity results. Finally, the weight 
value and score are assigned to each selected metric and 
calculation of complexity mark is exe cuted to obtain the 
mark given to the student’s program. There are two 
software metrics adopted (Abounader & Lamb, 1997; 
Xenos, Starrinoudis, Zikouli & Christtodoulakis, 2000) 
for complexity checking in JaQMeT: 

• Cyclomatic Complexity metric - measures the 
amount of decision logic in a single software 
module. Cyclomatic complexity is defined to be 
e – n + 2, where e and n are the number of edges 
and nodes in control flow graph, respectively. 
This cyclomatic complexity is measured for each 
method in class. 

• Operation Complexity of a class metric - defined 
∑ O(i), where O(i) is operation i’s complex 
value. Summing up the O(i) in for each operation 
i in the class gives their metric value.  

 
Meanwhile, the correctness of student’s program is 
assessed by using the equivalence partitioning technique. 
Equivalence partitioning technique is one of the black-
box testing techniques and adopted to design the test 
cases used to assess the correctness of the program. 
Black-box testing examines the functional operation of 
the system. This means that the program is executed with 
given test data, and the output of student’s program will 

be compared with the program schema to determine 
whether the output is correctly produced (Chu et al., 
1997). Specific score and weight were assigned to each 
test case as a measurement of the program correctness. 
The assessment result contains marks of student’s 
program. 
 
There are eight main functions consist in JaQMeT; 

§ Assess Program Correctness 
§ Upload File Schema 
§ Set Weight Value 
§ Assess Program Complexity 
§ Set Test Data 
§ Upload Question 
§ View Assessment Result  
§ Upload Student Program 

 
Figure 2 illustrates a use case diagram that maps 
respectively to all functions with the actors of the system. 
Each use case shows how an actor interacts with system 
and what the system does. The use case has a set of 
sequence actions and performs observable result to a 
particular actor, who interacts with the system. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 2: JaQMeT Use Case Diagram 
 
As shown in Figure 2, there are two actors involved in 
managing the functionalities of the JaQMeT, namely 
lecturer and Java compiler. Lecturer is a person who 
evaluates student’s program and plays an important role 
in preparing and managing source needed in processing 
Java program assessment, managing program schema, and 
managing weight value for measuring correctness and 
complexity of program. Java Compiler is an external 
entity or independent software used to compile and 
interpret a Java program to be assessed. 
 
 
All interfaces of JaQMeT system were developed based 
on number of use cases that have been defined. Figure 3 
to 8 depict sample interfaces that map the predefined use 
cases. 
 

 

Student’s 
Program 

Complexity 
Assessment Module 

Correctness 
Assessment Module 

 

Assessment 
Report 

Program’s 
Schema 

Complexity 
Checking 

Analysis and 
Comparison 

Calculation of 
Complexity 

Mark 

Complexity 
Result 

Weight 
and Score 

Execute 
Program 

Analysis and 
Comparison 

Expected 
Output 

Correctness 
Result 

Calculation of 
Correctness 

Mark 

Test Data 

Java Compiler

AssessProgramCorrectness

SetWeightValue

AssessProgramComplexity

UploadFileSchema

UploadQuestion

SetTestData

ViewAssessmentResult

Lecturer

UploadStudentProgram
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Figure 3: Upload Question 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 4: Upload File Schema 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: Upload Student Program 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Assess Program Correctness 
 

 
     
 
 
 

 
 
 
 
              Figure 7: Assess Program Complexity 
 
 
 
 
 

 
Figure 7: Assess Program Complexity 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: View Assessment Result 
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The following briefly explained Figure  3 to 8: 
• Upload Question interface is used to upload questions 

to be solved by students.  
• Upload File Schema interface is used to generate 

schema output for a given question.  
• Upload Student Program interface is used to upload a 

student’s program submitted to be assessed. 
• Assess Program Correctness interface is used to 

assess the correctness of student’s program.  
• Assess Program Complexity interface is used to 

assess complexity of student’s program.  
• View Assessment Result interface is used to view 

student’s correctness and complexity quality results 
 
 
A functional testing was conducted based on the strategy 
of black-box technique to ensure that JaQMeT has met 
expected requirements. Each predefined use case had 
been thoroughly checked its functionality. Use cases 
“Assess Program Correctness” and “Assess Program 
complexity” were tested by running it with predefined 
samples of program and samples of students’ program 
that were collected from the pair programming 
experiment conducted in this college. 
 
 
4.0 RESULTS AND CONCLUSION 
 
JaQMeT can help the lecturers specifically to reduce 
workload on grading programming assignment. Therefore 
it helps to reduce time to assess pair programming 
program quality. Student’s pair programming program 
quality which focuses on correctness and complexity can 
be graded by using JaQMeT. This result can be used to 
evaluate the effectiveness of pair programming practices. 
However JaQMeT also constrained by a few limitations 
such as it is a stand alone system and only can assess two 
quality factors; correctness and complexity for Java 
programming program. Therefore it is hoped that 
JaQMeT can be extended by using web-based technology 
as a web-based system might allow multiple accesses to 
the system. In addition a new tool that capable to check 
others program quality for other programming languages 
can be developed and hence integrate it with the tool 
developed in this study.   
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