
 516

Automated Tool to Assess Pair Programming Program Quality

Mazni Omara, Rohaida Romlib, Azham Hussainc

a,b,cGraduate Department of Computer Science,
College of Arts and Sciences,
Universiti Utara Malaysia,
06010 UUM Sintok, Kedah,

Malaysia

aE-mail : mazni@uum.edu.my

bE-mail aida@uum.edu.my

cE-mail : azham.h@uum.edu.my

ABSTRACT

This paper aims to present an automated tool that has
been developed to assess pair programming program
quality. The tool known as Java Quality Measurement
Tool or JaQMeT is used to assess specifically Java
program quality. There are two program quality factors
that can be assessed which are correctness and
complexity. Pair programming program will be graded
using JaQMeT. Then the results will be used to evaluate
the effectiveness of pair programming. JaQMeT is only at
its initial stage. It is an initial effort to facilitate the
lecturers to reduce workload on grading programming
assignment and specifically to assess pair programming
program quality. Although JaQMeT has its several
limitation but it is hoped that JaQMeT can be extended by
using web-based technology and capable to check others
program quality.

Keywords

Pair programming, program quality, automated tool

1.0 INTRODUCTION

Pair programming is a kind of collaborative programming
where two people work side-by-side on design,
implementation, and testing with one computer (Beck,
2000). William, Kessler, Cunningham & Jeffries (2000),
describes pair programming process as follows:

“In pair-programming, two programmers jointly produce
one artifact (design, algorithm, code, etc.).One partner is
the “driver” and has control of the
pencil/mouse/keyboard and is writing the design or code.
The other partner continuously and actively observes the
work of the driver – watching for defects, thinking of
alternatives, looking up resources, and considering
strategic implications of the work at hand. The roles of
driver and observer are deliberately switched between the
pair periodically.”

Pair programming is one of the core practices in Extreme
Programming. It is claimed that pair programming can
promote team work and thus produce high quality
software (McDowell, Werner, Bullock & Fernald, 2002;
DeClue, 2003; William & Kessler, 2003; Hanks,
McDowell, Draper & Krnjajic, 2004; Xu & Rajlich,
2005).

In order to assess program quality, there is a need to
develop a tool. The tool can assist the programmer
specifically to automate the process of evaluating
program quality. On the other hand, the tool can also
reduce workload of teaching staff or lecturer in grading
the programming assignment.

Pressman (2001) defined program quality as conformance
to explicitly state functional and performance
requirement, explicitly documented development
standard, and implicit characteristic that are expected of
all developed program. There are various quality factors
in order to assess program quality such as correctness,
complexity, maintainability, portability, and others. In this
study two main quality factors will be used which are
correctness and complexity. Correctness is a degree to
which the program performs its required function
(Pressman, 2001). Most correctness assessment is
empirical and based on checking a program’s output from
inputs. If the program meet its requirement, formally a
program is correct. Correctness is a straightforward
criterion to formulate the program quality. Meanwhile,
software complexity metrics is developed to identify parts
of program that are likely to be difficult to test,
understand, or error-prone.
Most studies on pair programming investigate an impact
of pair programming on program quality and then provide
empirical evidence on the effectiveness of the practices.
However the main aim of this study is to develop an
automated tool to assess pair programming program
quality. The tool will measure two main quality factors
which are correctness and complexity of the program.

 517

2.0 RELATED WORKS ON PAIR

PROGRAMMING QUALITY TOOL

In this section, related works of the study which includes
pair programming quality tool will be described. A
summary of pair programming literature which focuses on
program quality is given in Table 1: Summary of
Literature. Most of the literatures were obtained from the
ACM and IEEE databases.

Table 1: Summary of Literature

Author(s) Quality
Metrics

Method to
measure
program
quality

Using
Automated

Tool?

Williams et
al. (2000)

Functionality Using
automated
testing tool
that executed
by impartial
teaching
assistant

Yes

Ciolkowski
&
Schlemmer
(2002)

Complexity
§ Lines of

Codes
(LOC)

§ Comment
Ratio

§ Couplin g
Factor

Using
evaluation
tool to
compute
worst-case
complexity of
system

Yes

McDowell,
Werner,
Bullock &
Fernland
(2003)

Functionality
Readability

Using
student’s
score on
graded
programming
assignment

No

DeClue
(2003)

Functionality Using
student’s
score on
graded
programming
assignment
and
qualitative
survey

No

Gehringer
(2003)

Functionality Using
student’s
score on
graded
programming
assignment

No

McDowell,
Hanks &
Werner
(2003)

Functionality
Readability

Using
student’s
score on
graded
programming
assignment
and
qualitative
assessment
which include
functionality,
style and
holistic

No

Hanks et al.
(2004)

Complexity Using
JavaNCSS to
calculate
source code
metric of

Yes

program
Xu & Rajlich
(2005)

Lines of
Code (LOC)
Readability

Using
qualitative
assessment

No

Arisholm,
Gallis, Dyba
& Sjoberg
(2007)

Correctness Reviewed by
two
independent
senior
consultants
by using the
following
tool;
Correctness
analysis tool,
Each solution
tested using
automated
test scripts
and final
grading using
web-based
grading tool

Yes

There are various methods to measure program quality.
Some studies that focus on functionality quality metrics
have used student’s score on graded programming
assignment to assess pair programming program quality
(McDowell, et al., 2003; DeClue, 2003; Gehringer, 2003).
In contrast, Williams et al. (2000) have used automated
tool to assess functionality quality metric in their study.

Ciolkowski & Schlemmer (2002) and Hanks et al. (2004)
have performed pair programming experiments by using
an automated tool to compute complexity of the student’s
pair programming program. In addition, Arisholm et al.
(2007) have assessed correctness of quality program using
correctness analysis tool, automated test scripts and
automated web-based grading tool. Besides, another
method to measure pair programming quality in terms of
readability and lines of codes is by using qualitative
assessment (McDowell, Hanks & Werner, 2003; Xu &
Rajlich, 2005).

3.0 DESIGN OF JaQMeT

An automated tool which known as Java Quality
Measurement Tool (JaQMeT) has been developed to
assist teaching staff or lecturer to assess Java program
quality. JaQMeT is able to assess two program quality
factors which are correctness and complexity. It is
designed based on the integration of two studies proposed
by Rohaida, Fazilah & Mazni (2004) and Mawarny &
Rohaida (2005). Proper enhancements and modifications
had been made to fit with current requirements.

Two program quality factors were chosen to assess the
quality of student’s program. These two types of program
quality were adequate to assess program quality that
applied basic Java programming concepts. Apart from
that JaQMet is used as quality measurement tool to assess
program quality produced by student that applied pair
programming practices. Figure 1 depicts a process of
quality assessment in JaQMeT.

 518

Figure 1: Quality Assessment Process of JaQMeT

As shown in Figure 1, the process of measuring program
complexity is done by implementing static analysis to the
student’s program and program schema. Then, both
programs are analyzed by comparing their complexity
values to see their similarity results. Finally, the weight
value and score are assigned to each selected metric and
calculation of complexity mark is exe cuted to obtain the
mark given to the student’s program. There are two
software metrics adopted (Abounader & Lamb, 1997;
Xenos, Starrinoudis, Zikouli & Christtodoulakis, 2000)
for complexity checking in JaQMeT:

• Cyclomatic Complexity metric - measures the
amount of decision logic in a single software
module. Cyclomatic complexity is defined to be
e – n + 2, where e and n are the number of edges
and nodes in control flow graph, respectively.
This cyclomatic complexity is measured for each
method in class.

• Operation Complexity of a class metric - defined
∑ O(i), where O(i) is operation i’s complex
value. Summing up the O(i) in for each operation
i in the class gives their metric value.

Meanwhile, the correctness of student’s program is
assessed by using the equivalence partitioning technique.
Equivalence partitioning technique is one of the black-
box testing techniques and adopted to design the test
cases used to assess the correctness of the program.
Black-box testing examines the functional operation of
the system. This means that the program is executed with
given test data, and the output of student’s program will

be compared with the program schema to determine
whether the output is correctly produced (Chu et al.,
1997). Specific score and weight were assigned to each
test case as a measurement of the program correctness.
The assessment result contains marks of student’s
program.

There are eight main functions consist in JaQMeT;

§ Assess Program Correctness
§ Upload File Schema
§ Set Weight Value
§ Assess Program Complexity
§ Set Test Data
§ Upload Question
§ View Assessment Result
§ Upload Student Program

Figure 2 illustrates a use case diagram that maps
respectively to all functions with the actors of the system.
Each use case shows how an actor interacts with system
and what the system does. The use case has a set of
sequence actions and performs observable result to a
particular actor, who interacts with the system.

Figure 2: JaQMeT Use Case Diagram

As shown in Figure 2, there are two actors involved in
managing the functionalities of the JaQMeT, namely
lecturer and Java compiler. Lecturer is a person who
evaluates student’s program and plays an important role
in preparing and managing source needed in processing
Java program assessment, managing program schema, and
managing weight value for measuring correctness and
complexity of program. Java Compiler is an external
entity or independent software used to compile and
interpret a Java program to be assessed.

All interfaces of JaQMeT system were developed based
on number of use cases that have been defined. Figure 3
to 8 depict sample interfaces that map the predefined use
cases.

Student’s
Program

Complexity
Assessment Module

Correctness
Assessment Module

Assessment
Report

Program’s
Schema

Complexity
Checking

Analysis and
Comparison

Calculation of
Complexity

Mark

Complexity
Result

Weight
and Score

Execute
Program

Analysis and
Comparison

Expected
Output

Correctness
Result

Calculation of
Correctness

Mark

Test Data

Java Compiler

AssessProgramCorrectness

SetWeightValue

AssessProgramComplexity

UploadFileSchema

UploadQuestion

SetTestData

ViewAssessmentResult

Lecturer

UploadStudentProgram

 519

Figure 3: Upload Question

Figure 4: Upload File Schema

Figure 5: Upload Student Program

Figure 6: Assess Program Correctness

 Figure 7: Assess Program Complexity

Figure 7: Assess Program Complexity

Figure 8: View Assessment Result

 520

The following briefly explained Figure 3 to 8:
• Upload Question interface is used to upload questions

to be solved by students.
• Upload File Schema interface is used to generate

schema output for a given question.
• Upload Student Program interface is used to upload a

student’s program submitted to be assessed.
• Assess Program Correctness interface is used to

assess the correctness of student’s program.
• Assess Program Complexity interface is used to

assess complexity of student’s program.
• View Assessment Result interface is used to view

student’s correctness and complexity quality results

A functional testing was conducted based on the strategy
of black-box technique to ensure that JaQMeT has met
expected requirements. Each predefined use case had
been thoroughly checked its functionality. Use cases
“Assess Program Correctness” and “Assess Program
complexity” were tested by running it with predefined
samples of program and samples of students’ program
that were collected from the pair programming
experiment conducted in this college.

4.0 RESULTS AND CONCLUSION

JaQMeT can help the lecturers specifically to reduce
workload on grading programming assignment. Therefore
it helps to reduce time to assess pair programming
program quality. Student’s pair programming program
quality which focuses on correctness and complexity can
be graded by using JaQMeT. This result can be used to
evaluate the effectiveness of pair programming practices.
However JaQMeT also constrained by a few limitations
such as it is a stand alone system and only can assess two
quality factors; correctness and complexity for Java
programming program. Therefore it is hoped that
JaQMeT can be extended by using web-based technology
as a web-based system might allow multiple accesses to
the system. In addition a new tool that capable to check
others program quality for other programming languages
can be developed and hence integrate it with the tool
developed in this study.

REFERENCES

Abounader, J. R. & Lamb, D.A. (1997). A Data Model

for Object-Oriented Design Metrics. Retrieved May
26, 2005, from
http://citeseer.ist.psu.edu/abounader97data.html.

Arisholm, E., Gallis, H., Dyba, T. & Sjoberg, D.I.K.
(2007). Evaluating Pair Programming with Respect to
System Complexity and Programmer Expertise. IEEE
Software, 33(2), February 2007, 65-86.

Beck, K. (2000). Extreme programming explained.
Massachusetts: Addison-Wesley.

Chu, H. D., Dobson, J. E. & Liu, I.C. (1997). FAST-A
Framework for Automating Statistic-based Testing.
Retrieved April 28, 2002,from:
http://citeseer.nj.com/73306.html

Ciolkowski, M. & Schlemmer, M. (2002). Experiences
with a case study on Pair Programmming. Workshop
on Empirical Studies in Software Engineering,
Rovaniemi, Finland.

CourseMarker’s Research Page (2002). Retrieved March
31, 2004, from:
http://www.cs.nott.ac.uk/CourseMarker/

DeClue, T. H. (2003). Pair programming and pair trading:
effects on learning and motivation in a CS2 course.
Journal of Computing Sciences in Colleges, 18(5),
49-56.

Foxley, E., Higgins C. & Gibbon C. (1996). The Ceilidh
System A General View 1996 (on-line). Retrieved
March 31, 2004, from:
http://www.cs.nott.ac.uk/CourseMarker/more_info/ht
ml/Overview96.htm

Foxley, E., Higgins C., Tsintsifas A. & Symeonidis P.
(1999). The Ceilidh-CourseMaster System An
Introduction 1999 . Retrieved March 31, 2004, from:
http://www.cs.nott.ac.uk/CourseMarker/more_info/ht
ml/CMIntro.htm

Gehringer, E. F. (2003). A pair-programming experiment
in a non programming course. Companion of the
18th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and
applications, October 2003.

Hanks, B., McDowell C., Draper, D. & Krnjajic, M.
(2004) Program quality with pair programming in
CS1. Paper presented at the Software Engineering,
June 2004. Proceedings of the 9th annual SIGCSE
conference on Innovation and technology in
computer science education.

Matt, U. V. (1994). Kassandra : The Automatic Grading
System. Technical Report UMIACS-TR-94-59, CS-
TR-3275, University of Maryland. Retrieved April, 6,
2004, from:
http://citeseer.nj.nec.com/matt94kassandra.html

Mawarny, M. R. and Rohaida, R. (2005). Automating the
Process of Measuring Complexity of Java
Programming Assignment. Final Report Research
Faculty Grant. Universiti Utara Malaysia.

McDowell, C., Werner, L., Bullock, H. & Fernald, J.
(2002). The effects of pair-programming on
performance in an introductory programming course.
Paper presented at the Proceedings of the 33rd
SIGCSE technical symposium on Computer science
education, February 2002, ACM SIGCSE Bulletin,
34(1).

McDowell, C., Werner, L., Bullock, H. F. & Fernald, J.
(2003). The impact of pair programming on student
performance, perception and persistence. Paper
presented at the Software Engineering, June 2004.
Proceedings 25th International Conference on
Software Engineering, 3-10 May 2003, 602 – 607.

McDowell, C., Hanks, B. & Werner, L. (2003).
Experimenting with pair programming in the

 521

classroom. Paper presented at Proceedings of the 8th
annual conference on Innovation and technology in
computer science education, June 2003, ACM
SIGCSE Bulletin, 35(3), 60-64.

Pressman, R. S. (2001). Software Engineering: A
Practitioner's Approach (5th ed.): McGraw-Hill.

Rohaida, R., Cik Fazilah, H. & Mazni, O. (2004).
Correctness Assessment Of Java Programming
Assignment. Final Report Research Faculty Grant.
Universiti Utara Malaysia.

Williams, L., Kessler, R.R., Cunningham, W. & Jeffries,
R. (2000). Strengthening the case for pair
programming. IEEE Software, 17(4), July-Aug. 2000,
19-25.

Williams L. and Kessler R. (2003), Pair Programming
Illuminated: Addison-Wesley.

Xenos, M., Starrinoudis D., Zikouli K. & Christtodoulakis
D. (2000). Object-Oriented Metrics – A Survey.
Retrieved May 10, 2005, from
http://citeseer.ist.psu.edu/528212.html

Xu, S. & Rajlich, V. (2005). Pair Programming in
Graduate Software Engineering Course Projects.
Paper presented at the Proceedings of the 35th
ASEE/IEEE Frontiers in Education Conference, 19-
22 October.

