
 489

 db4DNASeq: An Object-oriented DNA Database Model associated with
Sequence Search Method

Keng Hoong Nga, Kyuk Wei Shoob, Wei Liam Diongc, Somnuk Phon-Amnuaisukd,

Chin Kuan Hoe

a,b,c,d,eFaculty of Information Technology, Multimedia University, Jln Multimedia
63100 Cyberjaya, Selangor, Malaysia

aE-mail : khng@mmu.edu.my

bE-mail : shoo.kyuk.wei05@mmu.edu.my

cE-mail : diong.wei.liam05@mmu.edu.my

dE-mail : somnuk.amnuaisuk@mmu.edu.my

eE-mail : ckho@mmu.edu.my

ABSTRACT

DNA database consists of many nucleotide sequences, it
is not only supporting typical database queries, but it also
needs to facilitate sequence search and alignment. In this
paper, we present an object-oriented nucleotide database
which is designed not only for the convenience of
executing normal database operations such as insertion,
modification or data querying in a fast manner, but it
also supports a fast search method on database sequences
with reasonable tradeoff between time and memory usage.

Keywords

Object Database, sequence search, database query,
Db4o, hash table

1.0 INTRODUCTION

Nucleotide sequence databases have become major
resources for many researchers in biological science.
These databases have frequently changed and expanded
due to the advance technologies used in sequencing and
also the rapid development of molecular biology
nowadays. These biological data tend to be voluminous,
hence the development of efficient and scalable solutions
are desired to provide easy-to-use and interactive
interfaces for accessing these data.

Molecular biologist started keeping DNA and protein
sequences in text files due to they are text strings in
nature. The use of DBMSs (database management
systems) to store sequences was motivated by the large
volume of genetic data (Seibel & Lifschitz, 2001).
Although the usage of database technology in this
research area is not uncommon, but most of them use only
limited functionalities in DBMS (Letovsky, 1999).

There are many molecular databases, such as
Genbank Sequence Database, EMBL (European
Molecular Biology Laboratory) Nucleotide Database and
the Ensembl Sequence Database. These are not complete
database systems but file systems with own storage,
manipulation and access methods. Moreover, some data
items in these databases are mislabeled, incomplete or
faulty annotated, or are simply redundant with other
existing entries. In fact, a lot of users still work with flat
files downloaded from the above public repositories and
sequence searching is done through programs like
BLAST (Altschul et al., 1990), SSAHA (Ning et al.,
2001), FASTA (Lipman & Pearson, 1988) and etc.

Biological databases can be designed using relational
data model, and implemented in relational DBMS.
MAGIC-SPP (Liang & Sun, 2006) is a DNA sequence
processing package which uses Oracle 9i relational
database to store the details of sequence data. Systems
like EnsMart, Atlas and DBGET/ LinkDB provide data in
a relational form. The data in these databases are stored as
primitive data types in tables and there are relationships
exist among the tables. Sequences and their annotated
biological features can be accessed and retrieved using
SQL (Shah et al., 2005).

DNA databases implemented using relational DBMS
rely on data models based on relations and tuples. These
models do not provide abstract data types or inheritance
over class-subclass hierarchies. On the other hand, the
sequence data is often very complex and some typical
data types used in conventional flat file include nested
records, list and sets. As a result, these data can not easily
be mapped into a relational database (Davidson et al.,
1997). Object-oriented model was adopted in sequence
database due to its ability to model these complex data
accurately.

 490

 The DDBJ (DNA Data Bank of Japan) is a DNA
database system that was created using an object-oriented
design approach (Okayama et al., 1998). The approach
enables straightforward manipulation of sequences and
their related data, and also quick updates of the DDBJ
system. OPM (Object Protocol Model) is a semantic-
based object-oriented model that provides specific
constructs to support the modeling of scientific
experiments (Chen & Markowitz, 1995). Another object-
oriented system is AceDB (Durbin, 1994), organization of
data is in classes. However, it does not support class
hierarchies or inheritance.

There have been a lot of works on modeling of
sequence data using object-oriented approach. However,
most of the data models are designed for the purpose of
accessing the properties of sequences but not optimized
for sequence matching. Although third-party search tools
such as BLAST or FASTA can be used for this purpose,
but wrapper classes are required for adjusting parameters
and parsing results. This will cause overheads to the
system and affect the search performance in terms of
speed.

In this paper we present a conceptual model on DNA
sequences using object-oriented approach. The data
model was implemented using db4o (www.db4o.com),
which is an open-source object database that can perform
faster than conventional databases. Import or update of
data in the database can be done through a user interface.
Furthermore, data search or sequence match can be
performed on these persistent objects. The rest of the
paper is organized as follows: Section 2 reviews the
materials and methods. Section 3 presents our results and
discussion. Section 4 concludes our paper.

2.0 MATERIALS AND METHODS

This section presents the information on sample databases
and the selected object database for implementation, our
database design in UML class diagram, the overview of
the database architecture, and the search algorithm uses to
perform matching in sequences.

2.1 DNA Sample Data

In the implementation of our program, we use several
DNA databases downloaded from the Ensembl
anonymous FTP site (www.ensembl.org). In this public
repository, users can find a lot of species’ databases and
their formats can be in FASTA, GenBank, EMBL and etc.
The downloaded DNA databases are Drosophila
Melanogaster, Aedes Aegypti and Cavia Porcellus.

2.2 Db4o – The Selected Object Database

Db4o (Db4o, 2007) is an open source object database that
enables JAVA and .NET developers to reduce
development time, cost and achieve exceptional level of

performance. We choose this open source database is due
to its simplicity and power. Its API is fairly easy to
understand and a complete database can be produced by a
novice programmer within short period of time . Its
simplicity can be shown by some examples of Db4o
codes in Table 1. From the table, we can see that only one
or two lines of codes are needed for creating/ opening a
database, loading objects from a class and storing objects
into the database.

Table 1: Examples of db4o codes

Create ObjectContainer db = Db4o.openFile(
"C:\\DNA.odb");

Load ObjectSet result = db.get(DNA.class);

Store DNA dna1 = new DNA("AAACCCGGG",
"test_description"); db.set(dna1);

Based on our own research, we find out that parsing
of DNA sequences in Db4o (object database) are faster
than MySQL, which is a relational database. A total of
21181 sequences from flat files are parsed to both
databases, the Db4o takes about 2.3 seconds to complete
the task while the latter spends about 3.6 seconds (Table
2). Db4o shows significant performance when it comes to
storing or querying objects with complex data structures.

 Table 2: Parsing speed of sequence database to db4o and
 MySQL

Db4o MySQL
average 2330ms average 3635ms

2.3 Database Design and Architecture

We use Unified Modeling Language (UML) to represent
the data model (Larman, 2001). The class diagram (figure
1) shows the design of our database. Basically, there are
three major classes in the database model, which are
Sequence, Occurrence and SHashTable. Generalization in
object-oriented model enables DNA sequences with
different formats to be stored in a super class named
Sequence.

 491

Figure 1: Database Design

The FastsSequence, GenBankSequence and
EMBLSequence classes inherits all attributes and
operations from the super class. Besides that, each sub-
class can define its own attributes and operations.
Sequence data will then be partitioned into many
contiguous subsequences that are p bases long, where p is
an integer. In this case, a DNA sequence with n bases
long will contain (n – p +1) overlapping subsequences.
The occurrences of each subsequence will be stored into
the SHashtable class. The DbInfo class is responsible for
keeping track of update operations in SHashtable.

Figure 2 shows the architecture of the db4DNASeq,
which is our proposed object-oriented DNA database.
Firstly, sequence data from flat files will be parsed to the
databas e. The parser is able to handle three types of
commonly used data format and there are FASTA,
Genbank and EMBL. Users can parse any new sequence
database, delete or update the existing databases. The
db4DNASeq database not only can be used for typical
database queries, but it also allows user to carry out
sequence matching between query sequences and the
database. In this case, show species that belong to a
family is an example of typical query in sequence
database.

Figure 2: Database architecture

2.4 Search Algorithm for Database Sequences

A search algorithm has been integrated with the object
database to perform matching between query sequences
and the database. The search method will be based on the
fast and reliable algorithm called SSAHA (Ning et al.,
2001). In the first stage, all sequences in the database
have to be divided into small subsequences with p bases
long, which will be termed as p-tuples. Then, hash table
needs to be constructed for storing all possible tuples. In
our case, the p size is set to 8 by default.

Anyway, user can change the p value from minimum
2 to maximum 12. Since there are only four types of
nucleotides (A, T, C and G) in DNA sequence, so there
will be 4,194,304 (411) possible p-tuples if the p is set to
11. Each tuple will be transformed into a string of binary
digits, and then it will be converted to an integer, as its
storage index in the hash table. The occurrences of a
particular p-tuple will be added to a list at the hashed
index. For a given query sequence Q with length n, it is
proceed base-by-base along Q from base 0 to base n – p.
At base t, the list of positions of the occurrences of the p-
tuple wt(Q) from the pre-computed hash table will be
taken. Each position has two values, sequence index and
offset.

From the list, a list of objects called ‘Hit’ is
computed and a ‘Hit’ takes three values, sequence index,
shift and offset. ‘Shift’ denotes the difference of position
of occurrence between a particular p-tuple in hash table
and current p-tuple of query sequence. The list of hits will
then be sorted by its index and shift value. The final part
of this search method is scanning through the sorted list
for 2p – 1 consecutive hits with identical index and shift
values.

Database

Fasta Genbank EMBL

Parser

Sequence

 492

2.5 Implementation

In order to evaluate our proposed object database using
Db4o for DNA sequences , an initial implementation is
produced. It is done on a computer with 1.83 GHz
processor and 2 GB of RAM. Prior to sequence search or
data querying, an object database will be built. The
downloaded flat-file based databases of the three fruit fly
species will be preprocessed and then parsed to classes in
object database. We implement three parsers to handle
file formats such as FASTA, GenBank and EMBL.

SHashtable class is used to store hash table after it
has been generated. Several hash tables with different p-
tuple size can be built and saved as persistent objects in
this class. The hash table works like a 2D array where the
inner element is of type ArrayList<Occurence> and the
outer layer is a fixed size array. The list of occurrences
can be resizable in case there is any update in the future.
Adding n elements into an instance of ArrayList requires
O(n) time, and it does not affect much on the performance
since hash table will be generated once only. We apply
indexing mechanism on attributes in this class to speed up
the retrieval process. As a result, the speed is much faster
than the retrieval without indexing.

Figure 3: Attributes and operations in Occurrence class

Occurrence class (figure 3) is created and it is
responsible for storing the sequence ID and its offset
position for a p-tuple. For instance, if the word ATGG
appears many times in many sequences in the database,
then the word will have a list of occurrences. Sequence
class will act as a super class to classes such as
FastaSequence, GenBankSequence and EMBLSequence.
The sub-classes are required since each DNA sequence
format has its own unique attributes. In addition, extra
methods can be defined in each sub-class to facilitate the
query process.

Several classes are also defined in the
implementation but objects from these classes will not be
stored as persistent objects in the database. The Hit class

is for the purpose of storing matches temporarily and
these matches are added into a list. After that, all matches
in the list will be sorted according to its index, shift and
offset. We use merge-sort rather than quick-sort for the
sorting, it is because the worst case running time for the
former is O(n log n), but it is O(n2) for the latter
(Goodrich et al., 2002). Next, finding of continuous hits
with same index and shift value is carried out and these
continuous hits will be regarded as a match between
query sequence and the database sequence.

 The Result class is used to display matching result.
Each instance takes a fixed length of query sequence and
a matched database sequence, and then the alignment
between them can be shown. We enhance the sensitivity
of this search method by expanding the matched sequence
to its left and right in order to maximize its match. Figure
4 shows one of our implemented GUIs, where users can
execute sequence search on this interface.

Figure 4: User interface for sequence search

3.0 RESULTS AND DISCUSSION

In this section, we show and then discuss the evaluation
results of typical database queries and sequence searches
that we have conducted in this object-oriented nucleotide
database. For querying the database, three approaches can
be used for any Db4o database and they are Query by
Example (QBE), Native queries and Simple Object Data
Access (SODA) queries. We test the database with some
queries and the outcome is fast and reliable, where we
execute a query and the retrieval can be done on the fly.

Figure 5: An example of SODA query

Figure 5 shows an example of query that retrieves
sequence objects that belong to species Drosophila and its

Query DNAquery=db.query();
DNAquery.constrain(EMBLSequence.class);
DNAquery.descend(“OrganismSpecies”).constra
in(“Drosophila”);
DNAquery.descend(“projectIdentifier”).const
rain(“Pn34451”);
ObjectSet result=DNAquery.execute();
listResult(result);

public class Occurrence{

private final int sequence_index;
private final int offset;

public Occurrence(int seq_index, int
ofset){

this.sequence_index=seq_index;
this.offset=ofset;

}
public int getSequenceIndex(){

return sequence_index;
}
public int getOffset(){
 return offset;
}

}

 493

project identifier is Pn34451. The execution of the query
is faster than the file-based method where in the latter
method, we need to write codes to open a file, search all
the data, retrieve the targeted data and then close the file.
In addition, any updates to the database sequences can be
done in just a few lines of codes and the speed is only
within milliseconds. For instance, we only have to
provide the following codes (figure 6) for updating the
organism’s classification to Prokaryote for sequence with
ID AC011569. In object database, new methods can also
be defined in order to facilitate the execution of a specific
query. This is contrast to relational model where it uses
available SQL functions for queries and sometimes a
specific query is unable to be executed due to constraints
in SQL.

Figure 6: An update operation in db4DNASeq database

Since our object database (db4DNASeq) is also
designed for the fast search method called SSAHA, hence
we evaluate the search performance of the database with
some query sequences. At first, the length of each query
sequence is fixed at 100bp, and then the tests start with 10
randomly generated query sequences, follow by 50, 100,
200 and 300 sequences. These tests are performed on the
generated hash tables with word size set to 6, 7, 8 and 9.
Two main factors are focused in these tests and there are
the time taken to load partial hash table from database to
memory, and the memory consumption for each test.

Table 3: Elapsed time for loading partial hash table from
 database to memory

 Number of Query Sequences
Word
Size

10 50 100 200 300

6 0.30s 0.30s 0.32s 0.33s 0.33s
7 0.69s 0.67s 0.71s 0.76s 0.78s
8 2.01s 2.21s 2.38s 2.42s 2.02s
9 6.34s 5.94s 6.16s 6.13s 6.27s

The reason we concentrate on both factors but not the

matching result in this evaluation is because the search
algorithm we use is based on SSAHA, so there is no
doubts on the outcome. The main objective is to evaluate
the effectiveness in terms of speed and memory usage of
the hash tables that are stored in the object database. This
is something different from the original SSAHA program,
where it uses large amount of memory and processing
power to generate a hash table and store the complete
hash table in the memory when we execute the program.
In some cases, it might require a few gigabytes of
memory just for the hash table (Ning et al., 2004).

Table 3 shows the elapsed time for loading a partial

hash table from the database to memory for each test. The
partial in this case means that only the matched p-tuples
in hash table will be loaded into memory but not the
whole hash table. Hence it will use less memory and it is
preferred in computer without large RAM. From the
result, it is clear that the word size will affect the elapsed
time but the number of query sequences does not have
impact on it. The probable explanation for this scenario is
when the word size increase, the number of p-tuples in
hash table also increase. For instance, 4096 (46) possible
p-tuples when word size is 6, and it increases to 262144
(49) when the word size is set to 9. As a result, the same
randomly generated query sequences will have more
matches in hash table with word size 9 compares to hash
table with word size 6, while the occurrences per specific
word (p-tuple) will be higher in the latter case.

Memory Usage of Loaded Hash Table

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5
Number of Query Sequences

M
em

or
y

(M
B

) Series1
Series2
Series3
Series4

10 50 100 200 300

Word Size=6

Word Size=7

Word Size=8

Word Size=9

Figure 7: Memory usage of hash table

The above explanation is further supported by the
memory usage of the loaded hash table (figure 7), where
the result shows that memory consumption is higher in
smaller word size hash table. It is due to the increment of
occurrences in words, and occurrences are objects in the
object database. In other word, we can say that the
sensitivity of searching in hash table with smaller word
size is better than hash table with bigger word size. We
also observe that higher numbers of query sequences
contribute to greater memory usage, and it is caused by
the growing numbers of matches in hash table.

4.0 CONCLUSION

We have designed an object-oriented DNA database, and
implemented the database model using one of the reliable
open-source object DBMS, which is Db4o. The
developed database is evaluated by a series of database
operations such as insertion, updating and querying. The
result shows that all these operations can be done and
completed in a fast manner. The database is also tested
with a fast search method, where it uses reasonable

List<EMBLSequence> Sequence=db.query(new
Predicate<EMBLSequence>(){
public Boolean match(EMBLSequence Sq){

return Sq.getSequenceID()
.equals(”AC011569”);

}});
EMBLSequence Seq=Sequence.next();
Seq.setOrgsmClass(“Prokaryote”);
db.set(Seq);

 494

memory for the hash table and it is suitable for computer
with lower RAM.

REFERENCES

Altschul, S., Gish, W., Miller, W., & Lipman, D. (1990).

A basic local alignment search tool. J. Mol. Biol.,
215, 403 – 410.

Chen, I.M., & Markowitz, V. (1995). An overview of the
object protocol model (OPM) and the OPM data
management tools. Information Systems, 20(5), 393 –
418.

Davidson, S.B., Overton, C., Tannen, V., & Wong, L.
(1997). Biokleisli: A digital library for biomedical
researchers. International Journal on Digital
Libraries, 1, 36 – 53.

Db4o: http://www.db4o.com (accessed in Dec 2007).
Durbin, R., & Mieg, J.T. (1994). The AceDB Genome

Database. Computation Methods in Genome
Research, 45 – 56.

Goodrich, M.T., & Tamassia, R. (2002). Algorithm
Design: Foundations, Analysis, and Internet
Examples: John Wiley & Sons, Inc.

Kasprzyk, A., Keefe, D., et al. (2004). EnsMart: A
Generic System for Fast and Flexible Access to
Biological Data. Genomre Research, 14, 160 – 169.

Larman, C. (2001). Applying UML and Patterns, 2nd
edition, Prentice Hall.

Letovsky, S. (1999). Bioinformatics: Database and
Systems: Kluwer.

Liang, C., Sun, F., et al. (2006). MAGIC-SPP: a database-
driven DNA sequence processing package with
associated management tools. BMC Bioinformatics,
7, 115 – 129.

Lipman, D.J., & Pearson, W.R. (1998). Improved tools
for biological sequence comparison. Proc. Natl Acad.
Sci. USA, 85, 2444 – 2448.

Ning, Z., Cox, A.J., & Mullikin, J.C. (2001). SSAHA: A
Fast Search Method for Large DNA Databases.
Genome Research, 11, 1725 – 1729.

Ning, Z., Spooner, W., et al. (2004). The SSAHA Trace
Server. Proceedings of the 2004 IEEE Computational
Systems Bioinformatics Conference, 544 – 545.

Okayama, T., Tamura, T., et al. (1998). Formal design
and implementation of an improved DDBJ DNA
database with a new schema and object-oriented
library. Bioinformatics, 14, 472 – 478.

Rother, K., Steinke, T., et al. (2005). Columba: an
integrated database of proteins, structures, and
annotations. BMC Bioinformatics, 6, 81 – 91.

Seibel, L.F.B., & Lifschitz, S. (2001). A Genome
Database Framework. LNCS, 2113, 319 – 329.

Shah, S.P., Huang, Y., et al. (2005). Atlas – a data
warehouse for integrative bioinformatics. BMC
Bioinformatics, 6, 34 – 49.

Weems, D., Miller, N., et al. (2004). Design,
implementation and maintenance of model organism
database for Arabidopsis thaliana. Comp Funct
Genom, 5, 362 - 369.

Zhou, X., & Song, I.Y. (2005). Conceptual Modeling of
Genetic Studies and Pharmacogenetics. LNCS, 3482,
402 – 415.

