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ABSTRACT 
 
 The internet has greatly facilitated scientific 
collaborations to efficaciously share their analytic 
knowledge.  The impending semantic web promises to 
dispense with some of the human effort by making the 
shared knowledge accessible to machines on a semantic 
basis; giving rise to the connotation of webifying artificial 
intelligence (AI) for doing reasoning of science, if 
unchecked, could turn into another pipe-dream.  In 
practise, as exemplified in this paper, it requires 
considerable effort to put the shared knowledge in 
common.  Therefore, we stress the need to adopt a 
realistic attitude when extending the knowledge sharing 
practices in scientific collaboration to the semantic web.   
 
Drawing ideas from previous studies in academic 
communities, supported by our analysis about knowledge 
sharing in the case study domain of Experimental High-
Energy Physics (EHEP), and acknowledging the 
limitation of AI, we advocate pursuing a pragmatic 
approach that emphasises the sharing of the analytic 
knowledge of a domain which is employed in 
computation, not cognition. Further, we highlight that it 
is suffice to focus on the directively and paradigmatically 
shared knowledge in a scientific collaboration.  
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1.0 INTRODUCTION 

A scientific collaboration is established to investigate 
complex phenomena that are beyond the capabilities of an 
individual scientist or group.  Confederations of scientific 
groups with common research goals pool their expertise 
and resources together to undertake collaborative 
scientific effort.  Today, large scale scientific 
collaborations encompass widely distributed scientific 
groups involving hundreds of institutions across the globe 

in research areas such as Human Genome, Oceanography, 
Astronomy and High-Energy Physics.   

In general, an experiment of a scientific collaboration is 
set up centrally and is staggeringly data intensive, 
resulting in large data collections.  The data is 
methodically captured and stored according to 
predetermined experimental and observation methods.  
After that, each scientific group is free to plan and analyse 
the shared data in fitting manner using various analysis 
methods and techniques known to them.   

An important component of collaborative scientific 
research is the sharing analytic knowledge and their 
related findings.  The internet has become the major 
vehicle for distributed groups in scientific collaborations 
to share knowledge related to their research quickly  
(Atkins et. el., 2003).  Yet, there is still much human 
mediation to correctly interpret and reuse the shared 
knowledge.   

The next generation web, called the semantic web 
(Berners-Lee, 1998), the eScience research initiatives 
(Hey & Trefethen, 2002) and the emerging grid (Foster, 
2002) promise to dispense with some of the human effort 
by making the shared knowledge accessible to machines 
on a semantic basis  to solve scientific problems operating 
on a global scale.  Since it is difficult to bring the machine 
to make sense about the physical world, the objective of 
the semantic web is to represent the human knowledge 
formally with the aid of ontologies or knowledge models  
(Jacob, 2003), enabling machines to interpret and use the 
knowledge.     

Firstly, the sharing of the analytic knowledge in scientific 
collaborations on the semantic web has yet to receive 
proper attention.  Secondly, since the semantic web 
concepts as logic, knowledge modelling and 
representation overlap with that of AI, exemplary 
semantic web initiatives highlight the attempt to webify  
AI for doing reasoning of science as envisaged in the 
motivating articles on science and semantic web  as 
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Berners-Lee & Hendler (2001), Hendler (2003), Shadbolt 
et. al. (2006), and also attempts to heed such call as in 
King et. al. (2004). The paper addresses this  concern and 
stresses the need to adopt a more realistic attitude when 
extending the existing knowledge sharing practices in 
scientific collaborations to the semantic web; so as not to 
turn the endeavour into hype.  In reality, formalising the 
knowledge for scientific reasoning by machine requires 
modelling of “deep knowledge”; which is a daunting task.  
Besides, the expressivity and scalability afforded by 
contemporary semantic web languages  is much restricted 
(Goble, 2005).  Consequently, a question that arises is: 
“What aspects of the analytic knowledge shared in a 
scientific collaboration do we need to model and why?” 

Our analysis examines issues related to knowledge 
sharing in the case study domain of EHEP, where there 
are many large scientific collaborations (Board of Physics 
and Astronomy, 1998).  Consequently, the examples in 
this paper will be derived from cases in EHEP.  We are 
convinced that our findings are relevant to other scientific 
collaborations that are about to embark on the semantic 
web.  

2.0 THE EHEP SCIENTIFIC COLLA-
BORATION: A CASE STUDY 

EHEP is dominated by large scientific collaborations, 
with membership from all over the world.  In this field of 
our case study, contemporary scientific collaborations 
such as the Belle collaboration with fifty-four institutional 
members (http://belle.kek.jp/belle/) and BaBar 
collaboration with seventy-seven members 
(http://www.slac.stanford.edu/BFROOT/) are actively 
involved in the study of the nature of Charge-Parity 
symmetry violation, which the physicists believe may 
hold vital clues to explain the dominance of matter over 
anti-matter in the universe.  The symmetry violation is 
evident in certain rarely occurring B meson particle decay 
events. 

Whilst a B event of interest occurs scarcely, the noise, 
i.e., the background events that accompany the signal, is 
enormous.  A particular data analysis in EHEP attempts to 
recognise interesting decay patterns existing in the huge 
experimental data sets by systematically removing 
superfluous noise.  Events for acceptance or rejection are 
characterised by applying quantitative restrictions on 
various distributions involving event selection variables, 
which are typically referred to as cuts.   

The recording and sharing of the analytic knowledge is an 
integral part of collaborative scientific research because it 
generates the essential shared understanding to enable 
researchers to collaborate.  For example, in the Belle 
collaboration, these publications are often referred to as 
Belle Notes and are maintained in the collaboration's 
secured online repository 
(http://belle.kek.jp/secured/belle_note/).  The sharing of 

knowledge helps to validate and verify previous findings 
and as well as to advance their research, leading to 
scientific productivity and trust.   

3.0 KNOWLEDGE SHARING IN ACA-DEMIC 
COMMUNITIES 

Studies on the scholarly network in sciences show that 
tightly bound scientific researchers exhibit a high level of 
mutual dependency upon analytic knowledge produced in 
works of peer researchers and ensuing analyses are often 
built on earlier results to purs ue their common research 
goals  (Fuchs, 1992; Whitley, 2000).  The existence of 
functional dependencies among peer researchers is 
demonstrated by their adherence to common work 
practice and competence standards.  Social cognitive 
theory also contends that people actively organise and 
regulate their actions largely on the basis of gained 
experience (Bandura, 1986).  As a result, the cognitive 
behaviour of the researchers is to a large extent founded 
on socially and technically shaped analytic experiences in 
scientific collaboration.   

Sharing of analytic knowledge supports learning and 
constant experimentation in scientific collaboration.  The 
changing understanding contributes to the incremental 
knowledge and development of innovative analytical 
techniques and methods.  Not surprisingly, much 
importance is placed upon the prompt dissemination of 
findings to guide future analytical and decision processes, 
as apparent in the establishment of in-house 
communication channels, such as online repositories and 
pre-print systems in scientific collaborations.  Such mode 
of dissemination of analytic knowledge underscores the 
directive, paradigmatic and strategic knowledge sharing 
practices on which the learning process in scientific 
collaborations is based.  This characterisation of the types 
of knowledge sharing practices in scientific collaborations 
roughly follows the example of Talja  (2002). 

Talja introduced the concepts of directive, paradigmatic, 
strategic and social information sharing to describe the 
different levels of information sharing in the context of 
information seeking and use in an academic organisation.  
According to Talja, directive sharing is recognised in the 
information sharing between a teacher and a student; 
paradigmatic sharing is perceived as a course to establish 
a novel research approach in a research; strategic sharing 
is a deliberate strategy of maximising efficiency in a 
project team; and social sharing as a means of 
establishing relationship among academician with diverse 
research interest.   

Adopting and adapting Talja's conception to sharing of 
analytic knowledge in scientific collaboration, we 
rephrase directive knowledge sharing  as apparent in the 
sharing of centrally controlled information (recorded 
knowledge) about the experiment (e.g. supporting 
scientific theories) and empirical knowledge about 
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material being examined (e.g. properties of sub-atomic 
particles) underwritten by high fidelity and often 
maintained by bodies of authority in the subject domain.  
The directive sharing coincides  with the practice of 
dissemination of ratified knowledge in a domain.  The 
paradigmatic knowledge sharing  involving 
distinguishable analytical techniques and methods helps 
to establish a shared understanding that can serve as a 
prototypical analysis approach within a scientific 
collaboration.  We view the strategic knowledge sharing  
as evident in the sharing of exclusive analytic resources 
aimed at maximising the efficiency of its consumption to 
make rapid progress in a closely-knitted institutional 
research group, i.e., in the same vein as Talja's 
conception.  Social knowledge sharing  as part of 
community building effort is not obvious in scientific 
collaborations that are comprised of researchers from a 
single discipline and pursuing common research goals .   

The strategic, paradigmatic and directive knowledge 
sharing modes reflects the knowledge flow within an 
expanding community of interactions along the 
ontological dimension in the Nonaka’s (1994) Spiral 
model. 

In what follows, we shed some light on the different kinds 
of analytic knowledge resources shared in our case study 
domain of EHEP, organised according to their level of 
sharing in the scientific community.  We broadly consider 
three categories of knowledge sharing, namely directive 
sharing across the domain, paradigmatic sharing within a 
particular scientific collaboration, and strategic sharing 
restricted to a research group.  

3.1 Directive Sharing of Factual and Empirical 
Knowledge in the EHEP Domain 

We have identified two types of shared knowledge 
resources in this category.  The dissemination of this 
ratified knowledge is considered to be widely applicable 
technical reference.  Its organisation is set apart in 
determinate ways from context of use.  

I. Theoretical account supporting EHEP research findings 
are published in books, scientific literature and journals 
of interest to particle physics.   

II. Certified empirical knowledge regarding subatomic 
particles, the characterisation of particle dynamics and 
intrinsic properties of these particles.  This kind of 
systematised knowledge is often shared in the form of 
technical references such as the Review of Particle 
Physics handbook (2004).  Other organised knowledge 
resources of value to the HEP communities include 
information about fundamental physical constants 
(http://phy-sics.nist.gov/cuu/Constants/), a standard list 
of HEP Monte Carlo particle numbers and numbering 
schema (http://www-pat.fnal.gov/ stdhep.html) to 
facilitate interfacing with tools used in particle physics, 
and natural units of measurement. 

3.2 Paradigmatic Sharing of Analytic Knowledge in a 
Scientific Collaboration (e.g. Belle Collaboration)       

We have identified three types of shared knowledge 
resources in this category.  This form of knowledge 
sharing takes place to support researchers of a scientific 
collaboration with common research concerns.  This 
translates to sharing of pertinent knowledge, either in 
packaged or recorded form, involved in the mechanism of 
their common and purposeful task activities.   

I. The experimental data analyses undertaken by EHEP 
researchers are directed to precisely measure the crucial 
behavioural attributes associated with subatomic 
particles.  The analysis performed on the data and the 
empirical findings are readily shared among peer 
researchers in the form of preprints and research notes. 

II. The sharing of packaged knowledge in the form of 
statistical programs and modules supported by 
statistical analysis tools such as PAW 
(http://paw.web.cern.ch/paw/) and  particle path 
simulation tools such as GEANT (http://www-
asd.web.cern.ch/wwwasd/geant/) is common in EHEP 
scientific collaboration.  

III. Knowledge about the organisation of the real data 
captured by detectors is comprised of the data model 
and supporting provenance information.  The sharing of 
this knowledge is important for proper access and 
handling of the related experiment data, often stored in 
distributed data repositories. 

3.3 Strategic Sharing of Analytic Knowledge in a 
Research Group (e.g. The University’s 
Experimental Particle Physics Group)  

We have also identified three types of shared knowledge 
resources in this category. The strategic sharing practice 
thrives in local research group largely because of the 
strong social interaction and trust that exist within the 
group.   

I. Recorded knowledge, which includes analysis 
documentation, reference notes and work files (e.g. 
event profiles and statistical summaries) generated in 
the course of data analysis. 

II. Packaged knowledge such as source and object 
software modules (e.g. event analyser, simulation data 
generation program) for data analysis and simulation. 

III. Knowledge about the organisation of locally maintained 
simulation and skimmed event data files. 

Although we have highlighted a variety of knowledge 
resources shared within a scientific collaboration, we 
advocate that we initially focus on extending the existing 
publishing model perspective to share the recorded 
analytic knowledge on the semantic web.  The sharing of 
packaged knowledge can come later. 
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4.0 ANALYTIC AND BACKGROUND 
KNOWLEDGE 

Collaborative scientific research is task-oriented.  The 
task undertaken by data intensive scientific collaboration 
is the systematic analysis of huge data collection under 
their purview.  The analytic knowledge that emanates 
from the data analysis task is shared in the scientific 
collaboration.  In order to characterise the structure of the 
analytic knowledge involved in carrying out a task, we 
asked the following questions: how the task is performed 
and what knowledge is utilised (or generated), when the 
knowledge is needed and why the knowledge is 
admissible.  The response to the what and why questions 
expose the underlying domain knowledge structure, 
whereas the how and when questions appeal to the task 
knowledge structure.  Consequently, we recognised the 
corresponding types of background knowledge utilised in 
data analysis were identified, which includes, but is not 
necessarily limited to what, why, how and when 
knowledge.   

We provide below an extended description about the four 
types of background knowledge in our case study.  
Whether these apparent differences correctly categorise 
the background knowledge is not our immediate concern.  
The terminology is only suggestive, however will prove 
useful in the ensuing discussion. 

4.1 How knowledge  

This  describes a task activity, i.e., a structured description 
of a set of steps to accomplish a specific task, data 
analysis in our case.  This task knowledge is derived 
based on community of practice in solving similar 
problems and understanding the limitations of specific 
solution.   For example, the event analysis task is a 
common task undertaken by the EHEP community, whose 
subtasks include: Determination of signal and 
background events, Determination of event selection 
criteria and Evaluation of signal efficiency. 

4.2 What knowledge  

This  provides a description of terminologies practicable in  
the scientific domain, in terms of which abstract entities 
are expressed with precision and brevity.  For example, 
the B0 is defined as a neutral meson particle comprised of 
a pair of d and d- quarks, with zero electric charge, has a 
nominal mass of 5279 MeV/c2, and so on.  This 
knowledge about the subatomic particle B0 helps to 
distinguish it from another particle.   

The what knowledge also clarifies the analytic knowledge 
that serves common needs for event analysis in the EHEP 
domain such as feasible B0 decay channel like B0 ?  ?0p0; 
?0 ? p+p-; p0 ?  ? ?, and that B0 decays in this mode with 
branching fraction upper limit of 5.3 x 10-6, the 

description of cuts utilised to reconstruct the decay 
particles, and so on. 

4.3 When knowledge  

This  makes reference to a particular functional subtask in 
a task activity.  It identifies the material context for the 
analytic knowledge, i.e., when the pieces of analytic 
knowledge is produced or applied; in a way indicating the 
intention for its use.  For example, in a EHEP data 
analysis , the when contextualises a set of cuts on track 
attributes that reconstructs the B0 candidate particle to the 
signal event selection task. 

4.4 Why knowledge  

This  supplies the justification or causal reasons to support 
certain claims about a particular subject matter.  In reality, 
the justification is linked to a body of cognition acquired 
by combining and extending knowledge gained from 
scientific sources (principles and theories), experience, 
reasoning and insights, which are embodied in community 
of practice, and sometimes are subjective and situation-
dependent.   

For example, a cut on the Likelihood of pion over kaon : 
L{p/?} > 0.6 is applied to identify pion, i.e., p+and p- 

particles in the B0 ?  ?0p0 decay channel.  The reason why 
this cut is necessary is because of the need to ensure that 
no pion is misidentified for kaon in the generic 
background decays such as B ?  Dp types, where D ?  ?-

p+p-. The question as to why-not a tighter cut is employed 
with a value higher than 0.6 is because it has been found 
to be statistically most effective when tested on 
appropriate Monte Carlo simulation data; a tighter cut can 
possibly lead to the signal pion be rejected.  The reason 
why the above cut on the distribution of L{p/?} works can 
be traced to previous findings of the scientific community 
that show that this cut is able to identify pion particles 
with high efficiency in the momentum region of pion 
between 500 MeV/c and 2000 MeV/c in this kind of 
analysis.  The question as to what-if we also need to 
identify pion particles with momentum outside this region 
may have to be dealt in the computation of error analysis. 

5.0 DISCUSSION AND CONCLUSION 

The previous section highlighted some different types of 
background knowledge that helps to clarify the shared 
analytic knowledge in scientific collaboration.  The what 
and why knowledge are imperative when considering the 
modelling of the domain, while the how and when 
knowledge distinctively characterise the task.  Relevant 
knowledge models must be developed to make this  
background knowledge explicit. 

In practise, the knowledge modelling effort is demanding 
and time consuming.  Therefore , the incentive must be 
commensurate with the level of effort that must be 



 448 

expended for the scientific collaboration to view it as 
worthwhile.  For example, while it may be encouraging to 
focus on the modelling of analytic knowledge that 
researchers need for cognition, which may be of 
significant use to some researchers, but we must weigh 
the effort it takes to put such analytic knowledge in 
common.  Hence, it is necessary to have a clear 
understanding of the purpose for developing a certain 
kind of knowledge resource collection for a scientific 
collaboration.  We underscore the importance of adopting 
a realistic attitude when extending the knowledge sharing 
practices in scientific collaboration to the semantic web.  
We propose two dimensions for consideration: the scope 
of knowledge sharing and the types of knowledge to 
model.   

5.1 Knowledge Sharing Scope  

On the first dimension, we want to emphasise that a 
critical mass of users are required to justify the modelling 
effort.  There is little incentive to semantically-enrich the 
shared knowledge resources utilised only by a small 
group of researchers, as the potential of use and reuse is 
limited.  Therefore, we advocate focussing on domain-
wide directively shared knowledge, and collaboration-
wide paradigmatically shared knowledge.   

The directively shared analytic knowledge provide a 
source of ratified reference knowledge of high integrity 
that are incorporated into an analysis, while, the 
paradigmatically shared analytic knowledge can serve as 
intellectual resources for emulating and extending 
previous analyses.   

5.2 Types of Knowledge  

On the second dimension, we recognise the modelling of 
useful knowledge to distinctively characterise the task and 
the domain.   

In this regards, a task (how) knowledge structure serve as 
the basis for streamline communication between 
researchers and effective connection between researchers 
and their computational tools on the semantic web.  The 
task structure also helps to indicate the context  (when) of 
production or use of the analytic knowledge to support a 
task activity.   

As for domain knowledge modelling, we need to 
represent both general and purposive knowledge.  While 
it might be possible to rely on the broadly disseminated 
knowledge about the domain to model the general domain 
knowledge, the modelling of the purposive domain 
knowledge focuses on the integral part of resources 
related to certain analytic tasks that are either computative 
or cognitive in nature.  The description of purposive 
knowledge applied in a task is sometimes referred to as 
“support knowledge” (Bylander & Chandrasekaran, 1988; 

Clancey, 1987), which represents the understanding of 
domain when performing that task. 

For a computative task, the purposive knowledge merely 
relies upon the semantic content as what knowledge (c.f. 
glossary of technical terms) to correctly interpret the 
`instructive' input and carry out the operation effectively.  
On the other hand, a cognitive task additionally requires 
purposive knowledge about causal process with 
intentional characteristics, i.e., why knowledge in the 
form of abstraction to support  reasoning and decision 
making.   

The modelling of why knowledge for cognitive utilisation 
is the principle of problem solving in AI.  The knowledge 
engineering approaches such as CommonKADS 
(Schreiber et. al., 2000) recommends acquisition of this 
knowledge based upon a predetermined inferencing 
strategy for specific cognitive tasks, but is still dependent 
upon the availability of potent inferential knowledge to 
instantiate it.  The issue is in the development of 
efficacious why knowledge exhibiting high-level intent of 
cognitive significance to either influence or determine the 
cognitive behaviour.  Developing the why knowledge 
model takes for granted that we could provide the 
knowledge that can be utilised to support cognition.  In 
reality, fulfilling this knowledge need is not easy for the 
two reasons mentioned below. 

Firstly, in regards to a machine's inability to learn as 
effectively as humans do, the formidable task of acquiring 
and modelling of the why knowledge and keeping the 
knowledge resources up to date becomes the sole 
responsibility of the modeller. 

Secondly, the resources  to develop the why knowledge 
model is unfortunately limited by quality and 
accessibility, particularly when the knowledge to be 
represented is complex and dynamic such as is the case in 
scientific domains, which could leave us quite stuck.  We 
not only require knowledge about the expertise involved 
in a real situation, but also the extent and origin of the 
many different information pertaining to it, as well as the 
reliability of that expert knowledge in the context of use.  
This means we also have to deal with much of the 
reasoning uncertainties in the form of knowledge of 
purpose, practice and performance in situation (Lakoff & 
Johnson, 1999).  For example, it became apparent from 
the discussion in the previous section that providing why 
knowledge demands consideration not just limiting to 
straightforward causal association in response to why 
questions, but also to factor in the knowledge that can 
respond to what-if and why-not questions that arise in the 
causal understanding.   

Because of the bottleneck in the acquisition and building 
up of the why knowledge content, we believe this part of 
AI subset that aims to capture `intelligence' and equipping 
machines for doing reasoning of science is not 
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immediately realisable.  So, we argue that the 
development of why knowledge to support cognition is an 
unpromising path to go for now. 

A potentially fruitful path to pursue is to better facilitate 
human understanding, as well as to expedite tasks as data 
analysis by making it easier for formal tools and 
intermediaries to interpret the specifications of analysis, 
clarified using precise and appropriate metadata (what 
knowledge) to support knowledge lean tasks as retrieval, 
integration and computation in order to compare the 
experimental findings and validate the results.  In 
comparison to why knowledge, the what know-ledge is 
amenable to development due to their abiding nature in a 
scientific domain and ease of their accessibility and 
maintainability.   

In summing, we perceive the general and purposive 
domain knowledge models as the determinant of the 
operationality of tasks commonly engaged by researchers 
in scientific collaboration.  In the context of knowledge 
sharing in a scientific collaboration, the general and 
purposive domain knowledge correspond to the 
directively and paradigmatically shared knowledge in a 
scientific collaboration, respectively.  
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