
 420

Comparing Document Object Model (DOM) and Simple API for XML
(SAX) in Processing XML Document in Leave Application System

Juliana Wahid

College of Arts and Sciences, Information Technology Building,

Universiti Utara Malaysia, 06010 Sintok, Kedah
Tel : 04-9284715, Fax : 04-9284753

E-mail : w.juliana@uum.edu.my

ABSTRACT

The Extensible Markup Language (XML) consists of two
Application Programming Interface (API) i.e. Document
Object Model (DOM) and Simple Application of XML
(SAX). Previous research has used the DOM API in the
Leave Application prototype. In this research, the DOM
API based code that developed in the prototype will be
changed to SAX API based code. The performance
measurement then is carried out to evaluate the used of
DOM API and SAX API in the prototype. The evaluation
process took place within in each API and also
combination of both APIs. From the evaluation process,
it was concluded that the use of combination of SAX
based code in Domino Workflow environment and DOM
based code in Microsoft Exchange 2000 Server produces
the lowest processing time that will increase the
performance of the leave Application system.

Keywords

Extensible Markup Language (XML), Document Object
Model (DOM), Simple Application of XML (SAX),
Performance Measurement

1.0 INTRODUCTION

Previous research by Juliana (2003) has shown that
interoperability between Domino Workflow and
Microsoft Exchange 2000 Server can be achieved using
Microsoft Exchange Connector for Lotus Notes and
Document Object Model (DOM) of Extensible Markup
Language (XML).

As stated by Laddad (2000) and [9], Extensible Markup
Language (XML) standard consists of two kinds of
Application Programming Interfaces (APIs), i.e.
Document Object Model (DOM) and Simple Application
XML (SAX). Juliana (2003) had carried out her research
using DOM because she noticed that DOM is more likely
to be used in information exchanging and there are more
examples of programming from various languages such
as Java, VBScript and LotusScript on DOM.

The used of DOM as stated by Hunter et al. (2000)
enables programmers to create documents and parts of
documents, navigate through the document, move, copy,
and remove parts of the document, add or modify
attributes. However, these document manipulations might

have a high price in terms of flexibility and resource
consumption (Brownell, 2002). The used of SAX can
perhaps minimizes time consuming in the prototype
system developed previously using DOM because as
stated by Bourret (2000) and Birbeck et al, (2001) the
SAX-based code uses much less memory where it buffers
only one row of data at a time while the DOM-based code
buffers the entire document. Furthermore, the SAX-based
code is faster because it does not have to spend time
building a DOM tree.

The main objective of this study is to process the XML
document in the prototype system developed previously
by Juliana (2003) using SAX API. Then, a performance
evaluation between the same prototype systems, i.e.
Leave Application System with different an XML API
will be carried out.

2.0 LITERATURE REVIEW

2.1 Extensible Markup Language (XML)

Extensible Markup Language (XML) is a new standard
that was produced by World Wide Web Consortium
(W3C) in late 1998. It is set of syntax rules and
guidelines for defining text -based markup languages.
XML languages have a number of uses including
exchanging information, defining document types and
specifying messages .

According to Sills et al. (2002), in an XML document, the
data are stored in a hierarchical fashion as shown in
Figure 1.

Figure 1: Staff.xml

 421

2.2 Document Object Model (DOM)

The XML Document Object Model (DOM) is a
programming interface for XML documents. It defines
the way an XML document can be accessed and
manipulated. As a W3C specification, the objective for
the XML DOM has been to provide a standard
programming interface to a wide variety of applications.
The XML DOM is designed to be used with any
programming language and any operating system. With
the XML DOM, a programmer can create an XML
document, navigate its structure, and add, modify, or
delete its elements.

A DOM implementation presents an XML document as a
tree structure, or allows client code to build such a
structure from scratch. It then gives access to the
structure through a set of objects, which provided well-
known interfaces. Figure 2 shows some XML text and its
transformation to tree structure.

Figure 2: XML tree structure (Source: Brownell, 2002)

In order to extract the XML document to tree structure,
XML parser will be used. Example of XML parser is
MSXML; which is built-in parser in Internet Explorer.
Once we have a DOM tree or document object, we can
access the parts of our XML document through its
properties and methods.

2.3 Simple API for XML (SAX)

SAX is a product of collaboration on the XML-DEV
mailing list. According Birbeck et al. (2001), SAX uses a
parser that reads from the input XML document and
notifies the application of interesting events as shown in
Figure 3. A SAX parser uses some predefined callbacks
to notify an application of parsing events. These callbacks
are defined as methods of several standard SAX
interfaces to be implemented by the application.

Figure 3: XML events structure (Source: Brownell, 2002)

2.4 DOM versus SAX

In reviewing both of DOM and SAX, diagrammatically,
DOM as shown in Figure 4 will parse the document into
the DOM tree and then use the DOM to navigate around
the document.

Figure 4: DOM framework (Source: Hunter et al, 2000)

Whereas the SAX approach as shown in Figure 5 tell the
parser to raise events whenever it find something (data).

Figure 5: SAX framework (Source: Hunter et al, 2000)

If our XML document were 20 mega bytes large, it would
be very inefficient to construct and traverse an in-
memory parse tree just to locate one piece of contextual
information. In the other hand, an event-based interface;
which is SAX would allow us to find it in a single pass
using very little memory. The using of DOM will not
only take up space (memory) but also time in building the
tree. However, as SAX only allows a view of one bit of
the document at a time, it is extremely useful using DOM
for random-access applications.

As objectives of this research is to minimize the time
consumed in the interoperability between Domino
Workflow and Microsoft Exchange 2000 Server in Leave
Application prototype, the advantages of SAX is most
probably highlighted. According to Hunter et al. (2000),
Birbeck et al, (2001), Brownell, (2002), and Sills et al,
(2002) SAX parsing is faster than DOM parsing. From
this point of view the next chapter will describe the code
changing process from DOM code-based to SAX code-
based in the Leave Application prototype system to
realize the evaluation of performance in both
environments.

3.0 IMPLEMENTATION AND EVALUATION

This section will describe the performance measure of
both DOM and SAX in terms of their responsiveness,
which evaluate how quickly a given task of processing
time i.e. XML document parsing and leave form creating,
can be accomplished by both APIs. The measure was
carried out in two category of measurement i.e. within
each APIs and combination of APIs.

3.1 Within Each APIs

This measurement was carried out either using DOM
based code or SAX based code in both Domino

 422

Workflow and Microsoft Exc hange 2000 Server
environment of the Leave Application System.

3.2 Combination of APIs

This measurement was carried out using combination of
DOM based code and SAX based code in both Domino
Workflow and Microsoft Exchange 2000 Server
environment of the Leave Application System.

Both Domino Workflow and Microsoft Exchange 2000
Server user were set up to be an applicant and approver of
the Leave Application System. As stated by Joines,
Willenborg, and Hygh (2003) same test must be run at
least three times, the leave application process was
carried out ten times for each setup mentioned above. For
each leave application process that also involved the
approval part, the processing time was obtained from
time start and time end in event log file in both Domino
Workflow and Microsoft Exchange 2000 Server
environment.

According to Joines et al. (2003) the performance
measure demands repeatable and reliable results. From
this point of view this research will consider only
repeatable results of processing time. If the times that
captured are repeatable in more then one specific times
then the average of the times will be calculated.

The processing time for leave application process with
the first setup i.e. DOM based code environment is shown
in Table 1.

Table 1: DOM based code environment processing time result

The processing time for leave application process with
the second setup i.e. SAX based code environment is
shown in Table 2.

Table 2: SAX based code environment processing time result

The processing time for leave application process with
the third setup i.e. SAX based code Domino and DOM
based code Microsoft Exchange 2000 Server environment
is shown in Table 3.

Table 3: SAX based code domino and DOM based code
exchange environment processing time result

The processing time for leave application process with
the forth setup i.e. DOM based code Domino and SAX
based code Microsoft Exchange 2000 Server environment
is shown in Table 4.

Table 4: DOM based code domino and SAX based code
exchange environment processing time result

From the above results, Table 5 summarizes the total
processing time for four different setups mentioned
above.

Table 5: Total processing time for each setup

4.0 RESULTS AND CONCLUSION

Result shown in Table 5 shows that combination of SAX
based code in Domino Workflow environment and DOM
based code in Microsoft Exchange 2000 Server produces
the lowest processing time of Leave Application process.

The statement “SAX parsing is faster than DOM
parsing”, can be proven by observing the processing time

 423

in Domino Workflow environment. Within APIs
implementation that referring to Table 1 and Table 2,
processing time for SAX based code is 5 second while
processing time for DOM based code is 6 second. By
referring Table 3 and 4 for combination of APIs
implementation, processing time for SAX based code is
5.5 second while processing time for DOM based code is
6.5 second.

However in the Microsoft Exchange 2000 Server
environment, DOM based code produces the lowest
processing time then the SAX based code. This happens
because the implementation of SAX based code in the
Microsoft Exchange 2000 Server uses two public folders
that drag the processing times.

5.0 ACKNOWLEDGMENT

This research is supported by Faculty of Information
Technology, Universiti Utara Malaysia.

REFERENCES

Birbeck, M., Duckett, J., Gudmundsson, O. G., Kobak,

P., Lenz, E., Livingstone, S., Marcus, D., Mohr, S.,
Pinnock, J., Visco, K., Watt, A., Williams, K., Zaev,
Z., and Ozu, N. (2001). Professional XML 2nd
Edition. Wrox Press Ltd. United Kingdom.

Bourret, R. (2000). Data Transfer Strategies .
Transferring data between XML documents and
relational databases. Retrieved Jun 11, 2001 from the
World Wide Web:
http://www.rpbourret.com/xml/DataTransfer.htm

Brownell, D. (2002). SAX2 . O’Reilly & Associates, Inc.
United States of America.

Hunter, D., Cagle, C., Gibbons, D., Ozu, N., Pinnock, J.,
and Spencer, P. (2000). Beginning XML . Wrox
Press Ltd. United Kingdom.

Joines, S., Willenborg, R., and Hygh, K. (2003).
Performance Analysis for Java Web Sites . Pearson
education, Inc. United State.

Juliana Wahid (2003). Establishing Effective Workflow
Interoperability Framework in the case of Domino
Workflow and Microsoft Exchange 2000 Server.
MSc(IT) UUM Thesis .

Laddad, R. (2000). XML APIs For Databases. Java
World January 2000. Retrieved November, 2001
from th eWorld Wide Web:
http://www.javaworld.com/javaworld/jw-01-
2000/jw-01-dbxml.html.

Sills, A., Ahmed, M., Boumphrey, F., and Ortiz, J.
(2002). XML.NET Developer’s Guide . Syngress
Publishing, Inc. Canada.

Skonnard, A. (2000). The XML Files. MSDN Magazine
2000. Retrieved November, 2001 from the World
Wide Web:
http://msdn.microsoft.com/library/default.asp?url=/li
brary/en-us/dnmag00/html/xml0500.asp

