New Bloom Filter Architecture For String Matching

Agung Sediyono?, Ku Ruhana K u-M ahamud®

8 nformatics Engineering Department
Universitas Trisakti, Jakarta, Indonesia
Tel: +62215663232 ext 178, Fax: +6221567001
E-mail: agung@trisakti.ac.id

PCollege of Arts and Science
Universiti Utara Malaysia, 06010 Sintok, Kedah
Tel : 04-9284701, Fax : 04-9284753
E-mail : ruhana@uum.edu.my

ABSTRACT

Implementation of the Bloomfilter for plagiarism detection
in full text document has a problem on how to identify the
same terms from different location. Location identifier can
be hashed in offline mode snce the collection is static. By
this approach, the computation speed of the Bloom filter
can be improved. Two new Boom filter architectures are
proposed in this study to overcome the problem of
computational time. First architecture concatenates hash
code of the string and its location identifier, while the
second architecture concatenates the bit position of the
string and itslocation identifier. Analysis wasconducted to
evaluate the proposed architectures in terms of
computation time. From the result, computation time can
be reduced if the location identifiers are hashed offline.

Keywords
Bloom Filter,Ccomputation Speed, Location Identifier

10 INTRODUCTION

Bloom filter is widely used when large scale computer
system needs to process a huge data collection in a short
time and to save space for data storage (Bloom, 1970).
However, Bloomfilter was not popular with a number
of researchers when it was initially introduced due to its
false positive weakness. A false positive is a condition
when a key is not in the filter but declares that the key is
in. False positive is caused by the imperfection of a hash
function implemented in limited space. Bloom filter
uses the same method as in the hashing method and
maps a key to an address. In real application, Bloom
filter isused as atable lookup. There are two advantages
of using Bloom filter; first for search process and
secondly for data structure which is an efficient memory
usage approach. The implementation of the Bloom filter
and its variance depends on the needs. Some
implementations stressed on how to speed up the
computation while others focused on how to reduce

349

false positive rate instead of the speed of computation
time.

Cuenca-Acuna et al. (2001) implement Bloom filter in
the peer-to-peer information sharing. In this case, the
size of information that is exchanged among the peers
can be shrunk so that the computer network traffic can
be reduced. A new form of Bloom filter called space
code Bloom filter was introduced by Kumar et al. (2003)
for measuring traffic flow of packets in computer
network by returning the estimate number of packets in
the flow during measurement epoch. Mutaf &
Castelluccia (2004) implement a Bloom filter in cellular
system especially to reduce the paging cost by entering
the multiple terminal identifiers into the Bloom filter so
that the paging and location update can conduct
concurrency. The bandwidth usage can be reduced by
broadcasting the Bloom filter to the base station.

Ramakrishna (1989) conducts experiment to measure
the practical performance of the Bloomfilter in terms of
false positive rate by using the universal hash function.
This research proofs that theoretical false positive rate
can practically be realized. In order to decrease false
positive rate, Shamugasundaram et al. (2004) proposes
the Hierarchical Bloom Filter (HBF) where reduction of
the false positive rate is achieved by top-down
hierarchical checking where the occurrence of false
positive in the upper level can be crossed checked at the
lower level. Implementation of Bloom filter in finding
duplicates in data stream and to detect fraud in
advertisement network has been introduced by Metwally
et a. (2005). The detection process is based on the
duplicate clicks within a short period of time and
detection can be conducted in real time.

Implementation of Bloom filter in plagiarism detection
in full text document has a problem on how to identify
the same terms which comes from the different location.
This arises from the fact that a Bloomfilter only has the
capability to answer whether a term is in the Bloom or
not. The Bloom filter architecture has three stages to
convert a string to be a bit position of the bit array. The
first stage is converting a string to a hash code, the

second stage is converting a hash code to a bit position
and the last stage is matching the bit position into the bit
array. Shanmugasundaram et a. (2004) tried to
concatenate the block of payload and its offset before
entering into the Bloom filter, so that the block of
payload and its location can be detected. This problem
can also be resolved by concatenating the string and its
location as an input to the Bloomfilter. Since Bloom
filter has three stages to look up a string in the bit array,
there are also three possibilities where the combination
between string and its location can be conducted. First
possibility is concatenating the string and its location
before hashing. Second possibility is concatenating the
hash code of string and its location before entering into
the bit position converter. The last possibility is
combining the bit position of the string and its location
before the matching process to the bit array. This study
focuses on the best approach to take in terms of false
positive rate and computation time.

This paper is organized as follows. Section 2 describes
the proposed architecture of the Bloom filter while the
analysis of computationa time is presented Section 3.
Conclusion and future work are given in Section 4.

2.0 PROPOSED BLOOM FILTER
ARCHITECTURES

In this study, two new architectures are proposed in an
effort to decrease the computational time of the Bloom
filter. These architectures are based on the idea of omitting
the redundancy of computation in the comparison between
terms and spot areas. For instance, if there are mtermsin a
spot and n spots collection that have to be compared, the
hash function operation can be decreased from m x n times
in the original architecture to m + n times in the modified
architectures. The proposed architectures are based on the
architecture used by Shanmugasundaram et al. (2004) as
depicted in Figure 1. In this architecture, the term and its
location identifier are concatenated as a string and a hash
function is used to produce a hash code. The hash code is
then divided into n block and each block is converted to a
bit position using the mod operation.

350

tid. 1.anchartem=Tie sampe
imertk patofte aatsk

|um| |u.:.u| |md|

|roee wiv

?cm_ n, ancho lmm* The
mole docurmenl apal o lhe
nalym 2 walem .

- |

vt e, | [t i [t et |

L~ ——__ _—=___!
I |

351

Ttot(MODI-I1) = (m)Thash + (m)(Tdiv+3Tmod) +
(M) Thit (6)

Based on this anadysis, it can be concluded that the
MODI-II isthe best architecture in terms of computation
time.

40 CONCLUSION AND FUTURE WORK

A problem to differentiate the same terms in the
different location can be resolved by concatenating
between terms and its location identifier. Since the
collection is static, the location identifier is also static so
that the location identifiers can be hashed offline. Using
this approach the proposed MODI-II architecture
outperforms the other architectures in terms of the
computation time.

Future work could include the use of the proposed
architectures in finding the longest common part for
detecting plagiarism in afull text document collection.

REFERENCES

Bloom, H. Burton. (1970). Space/Time trade-offs in hash
coding with allowable error. Communication of
the ACM, 13, 422-426.

Cuenca-Acuna, F.M., Peery, C., Martin, R.P. & Nguyen,
T.D. (2001). PlanetP : Infrastructure support
for P2P information sharing. Technical Report
DCS TR-465. Department of Computer,
Rutgers University, New Jersey.

Kumar, A., Xu, J, Li, L. & Wang, J. (2003). Space-code
Bloom filter for efficient traffic flow
measurement. Proceedings of The Internet

Measurement Conference. Miami Beach.
Florida. USA, 167-172.

Metwaly, A., Agrawa, D., El Abbadi, A. (2005),
Duplicate detection in click streams,
Proceedings of the 14" International
Conference on World Wide Web, Chiba, Japan,
12-21.

Mutaf, P, & Castelluccia, C (2004). Hash-based paging
and location update using Bloomfilter. Mobile
Network and Applications, 9, 627-631. Kluwer
Academic Publisher.

Ramakrishna, M.V. (1989). Practical performance of

Bloom filter and parallel free-text searching.
Communication of the ACM. 32, 1237-1239.

Shanmugasundaram, K., Bronnimann, H. & Memon, N.
(2004), Payload attribution via hierarchical

352

Bloom filter, Proceedings of the 14" ACM
Conference on Computer and Communications
Security, Washington DC, USA, 31-41.

