
 349

New Bloom Filter Architecture For String Matching
Agung Sediyonoa, Ku Ruhana Ku-Mahamudb

aInformatics Engineering Department
Universitas Trisakti, Jakarta, Indonesia

Tel:+62215663232 ext 178, Fax:+6221567001
 E-mail: agung@trisakti.ac.id

bCollege of Arts and Science

Universiti Utara Malaysia, 06010 Sintok, Kedah
Tel : 04-9284701, Fax : 04-9284753

E-mail : ruhana@uum.edu.my

ABSTRACT

Implementation of the Bloom filter for plagiarism detection
in full text document has a problem on how to identify the
same terms from different location. Location identifier can
be hashed in offline mode since the collection is static. By
this approach, the computation speed of the Bloom filter
can be improved. Two new Bloom filter architectures are
proposed in this study to overcome the problem of
computational time. First architecture concatenates hash
code of the string and its location identifier, while the
second architecture concatenates the bit position of the
string and its location identifier. Analysis was conducted to
evaluate the proposed architectures in terms of
computation time. From the result, computation time can
be reduced if the location identifiers are hashed offline.

Keywords

Bloom Filter,Ccomputation Speed, Location Identifier

1.0 INTRODUCTION

Bloom filter is widely used when large scale computer
system needs to process a huge data collection in a short
time and to save space for data storage (Bloom, 1970).
However, Bloom filter was not popular with a number
of researchers when it was initially introduced due to its
false positive weakness. A false positive is a condition
when a key is not in the filter but declares that the key is
in. False positive is caused by the imperfection of a hash
function implemented in limited space. Bloom filter
uses the same method as in the hashing method and
maps a key to an address. In real application, Bloom
filter is used as a table lookup. There are two advantages
of using Bloom filter; first for search process and
secondly for data structure which is an efficient memory
usage approach. The implementation of the Bloom filter
and its variance depends on the needs. Some
implementations stressed on how to speed up the
computation while others focused on how to reduce

false positive rate instead of the speed of computation
time.

Cuenca-Acuna et al. (2001) implement Bloom filter in
the peer-to-peer information sharing. In this case, the
size of information that is exchanged among the peers
can be shrunk so that the computer network traffic can
be reduced. A new form of Bloom filter called space
code Bloom filter was introduced by Kumar et al. (2003)
for measuring traffic flow of packets in computer
network by returning the estimate number of packets in
the flow during measurement epoch. Mutaf &
Castelluccia (2004) implement a Bloom filter in cellular
system especially to reduce the paging cost by entering
the multiple terminal identifiers into the Bloom filter so
that the paging and location update can conduct
concurrency. The bandwidth usage can be reduced by
broadcasting the Bloom filter to the base station.

Ramakrishna (1989) conducts experiment to measure
the practical performance of the Bloom filter in terms of
false positive rate by using the universal hash function.
This research proofs that theoretical false positive rate
can practically be realized. In order to decrease false
positive rate, Shamugasundaram et al. (2004) proposes
the Hierarchical Bloom Filter (HBF) where reduction of
the false positive rate is achieved by top-down
hierarchical checking where the occurrence of false
positive in the upper level can be crossed checked at the
lower level. Implementation of Bloom filter in finding
duplicates in data stream and to detect fraud in
advertisement network has been introduced by Metwally
et al. (2005). The detection process is based on the
duplicate clicks within a short period of time and
detection can be conducted in real time.

Implementation of Bloom filter in plagiarism detection
in full text document has a problem on how to identify
the same terms which comes from the different location.
This arises from the fact that a Bloom filter only has the
capability to answer whether a term is in the Bloom or
not. The Bloom filter architecture has three stages to
convert a s tring to be a bit position of the bit array. The
first stage is converting a string to a hash code, the

 350

second stage is converting a hash code to a bit position
and the last stage is matching the bit position into the bit
array. Shanmugasundaram et al. (2004) tried to
concatenate the block of payload and its offset before
entering into the Bloom filter, so that the block of
payload and its location can be detected. This problem
can also be resolved by concatenating the string and its
location as an input to the Bloom filter. Since Bloom
filter has three stages to look up a string in the bit array,
there are also three possibilities where the combination
between string and its location can be conducted. First
possibility is concatenating the string and its location
before hashing. Second possibility is concatenating the
hash code of string and its location before entering into
the bit position converter. The last possibility is
combining the bit position of the string and its location
before the matching process to the bit array. This study
focuses on the best approach to take in terms of false
positive rate and computation time .

This paper is organized as follows. Section 2 describes
the proposed architecture of the Bloom filter while the
analysis of computational time is presented Section 3.
Conclusion and future work are given in Section 4.

2.0 PROPOSED BLOOM FILTER
ARCHITECTURES

In this study, two new architectures are proposed in an
effort to decrease the computational time of the Bloom
filter. These architectures are based on the idea of omitting
the redundancy of computation in the comparison between
terms and spot areas. For instance, if there are m terms in a
spot and n spots collection that have to be compared, the
hash function operation can be decreased from m x n times
in the original architecture to m + n times in the modified
architectures. The proposed architectures are based on the
architecture used by Shanmugasundaram et al. (2004) as
depicted in Figure 1. In this architecture, the term and its
location identifier are concatenated as a string and a hash
function is used to produce a hash code. The hash code is
then divided into n block and each block is converted to a
bit position using the mod operation.

Figure 1: Original Architecture

Figure 2 depicts the first proposed architecture where the
term and its location identifier are hashed separately. These
hash codes are concatenated and then are divided into n
blocks. Finally, each block is converted to a bit position
using the mod operation. The second proposed architecture
is as shown in Figure 3. The term and its location identifier
are hashed separately. Each hash code is divided into n
blocks and then each block is converted to a bit position
using a mod operation. Finally, each bit position from the
different hash code is added to each other to form a new bit
position.

Figure 2: Proposed Architecture I

 351

Figure 3: Proposed Architecture II

3.0 ANALYSIS OF COMPUTATIONAL
TIME

The analysis of the computation time assume that the
time of concatenating, generating hash code, generating
bit position, dividing hash code, combining bit position
and total computation time are Tcon, Thash, Tmod,
Tdiv, Tbit and Ttot respectively. It also assumes that the
number of hash function is three and this is represented
by three bit position of the Bloom filter.

In the original architecture (ORI), total computation
time is given by

Ttot(ORI) = Tcon + Thash + Tdiv+3Tmod (1a)

while for first proposed architecture (MODI-I), it can be
calculated as

Ttot(MODI-I) = Tcon +2 Thash + Tdiv+3Tmod (1b)

and for the second proposed architecture (MODI-II)

Ttot(MODI-II) = 2 (Thash+ Tdiv+3Tmod)+ 3Tbit (1c)

From equations (1a) and (1b), it can shown that ORI
will outperform MODI-I. Meanwhile, from equations
(1a) and (1c) ORI will outperform MODI-II if the value
of Tcon is lower than (Thash+ Tdiv+2Tmod+ 3Tbit).
This condition is valid because Tcon is a primitive string
operation concatenating two strings, and Thash, Tmod
and Tbit are more complex numerical operations. If
there are m keys in one spot, then equations (1a), (1b)
and (1c) can be written as:

Ttot(ORI) = m(Tcon + Thash + Tdiv+3Tmod) (2a)

for ORI and for MODI-I as

Ttot(MODI-I) = (m+1) Thash + m(Tcon +
Tdiv+3Tmod) (2b)

and for MODI-II as

Ttot(MODI-II) = (m+1)(Thash + Tdiv + 3Tmod)
+3mTbit (2c)

If m is big enough (m>>1) the value of m+1 is close to
m, ORI is equal to MODI-I, meanwhile MODI-II is
greater 3mTbit than ORI. Up to this stage ORI still
outperforms MODI-II.

Equations (2a), (2b) and (2c) can be modified for
condition if there are n collection spots . The time taken
to find out all occurrences of m terms inside the n
collection spots for ORI can be calculated using

Ttot(ORI) = nmTcon +nm(Thash + Tdiv + 3Tmod) 3a)

while computation time for MODI-I is

Ttot(MODI-I) = (m+n) Thash + (mn) (Tcon +
Tdiv+3Tmod) (3b)

and for MODI-II is

Ttot(MODI-II) = (n+m)(Thash + Tdiv +
3Tmod)+3(nm)Tbit (3c)

In comparing Ttot(ORI) and Ttot(MODI-I), equation
(3a) can be written as

Ttot(ORI) = nmThash +nm(Tcon + Tdiv + 3Tmod)
 (4)

From equation (3b) and (4), nmThash is greater than
(m+n)Thash. Therefore MODI-I outperform ORI.
Therefore equations (3b) and (3c) can be written as

Ttot(MODI-I) = (m+n)Thash + (mn)(Tdiv+3Tmod)+
(mn)Tcon (5a)

Ttot(MODI-II) = (m+n)Thash + (m+n)(Tdiv+3Tmod) +
(mn)Tbit (5b)

From equations (5a) and (5b), it can be seen that MODI-
II outperforms MODI-I because (m+n)(Tdiv+3Tmod) is
smaller than (mn)(Tdiv+3Tmod).

For the condition where the collection is static, the
computation time of MODI-II can be improved by
hashing n, the location identifiers in offline mode.
Through this approach, equation (5b) can be written as

 352

Ttot(MODI-II) = (m)Thash + (m)(Tdiv+3Tmod) +
(mn)Tbit (6)

Based on this analysis , it can be concluded that the
MODI-II is the best architecture in terms of computation
time.

4.0 CONCLUSION AND FUTURE WORK

A problem to differentiate the same terms in the
different location can be resolved by concatenating
between terms and its location identifier. Since the
collection is static, the location identifier is also static so
that the location identifiers can be hashed offline. Using
this approach the proposed MODI-II architecture
outperforms the other architectures in terms of the
computation time.

Future work could include the use of the proposed
architectures in finding the longest common part for
detecting plagiarism in a full text document collection.

REFERENCES

Bloom, H. Burton. (1970). Space/Time trade-offs in hash
coding with allowable error. Communication of
the ACM, 13, 422-426.

Cuenca-Acuna, F.M., Peery, C., Martin, R.P. & Nguyen,
T.D. (2001). PlanetP : Infrastructure support
for P2P information sharing. Technical Report
DCS-TR-465. Department of Computer,
Rutgers University, New Jersey.

Kumar, A., Xu, J., Li, L. & Wang, J. (2003). Space-code
Bloom filter for efficient traffic flow
measurement. Proceedings of The Internet
Measurement Conference. Miami Beach.
Florida. USA, 167-172.

Metwally, A., Agrawal, D., El Abbadi, A. (2005),
Duplicate detection in click streams,
Proceedings of the 14th International
Conference on World Wide Web, Chiba, Japan,
12-21.

Mutaf, P, & Castelluccia, C. (2004). Hash-based paging
and location update using Bloom filter. Mobile
Network and Applications, 9, 627-631. Kluwer
Academic Publisher.

Ramakris hna, M.V. (1989). Practical performance of
Bloom filter and parallel free-text searching.
Communication of the ACM. 32, 1237-1239.

Shanmugasundaram, K., Bronnimann, H. & Memon, N.
(2004), Payload attribution via hierarchical

Bloom filter, Proceedings of the 14th ACM
Conference on Computer and Communications
Security, Washington DC, USA, 31-41.

