
 25

BSRCA: Biological Sequence Analysis Approach to Robotic Soccer with
Cellular Automata Classifier

P. KIRAN SREE† Dr.I .RAMESH BABU† † N.S.S.S.N USHA DEVI†††

† Associate Professor, Department of Computer Science, S.R.K Institute of Technology, Enikepadu, Vijayawada,India,

pkiransree@gmail.com, Mobile: +919959818274.

††Head of the Department, Comuter Science, Acharya Nagarjuna University, Guntur.

††† Graduate Student of C.S.E,J.N.T.University.

ABSTRACT

This paper reports on the application of sequence
analysis algorithms for agents in robotic soccer and a
suitable representation is proposed to achieve this
mapping. The objective of this research is to generate
novel better in-game strategies with the aim of faster
adaptation to the changing environment. A
homogeneous non-communicating multi -agent
architecture using the representation is presented. To
achieve real-time learning during a game, a bucket
brigade algorithm is used to reinforce Cellular
Automata Based Classifier. A technique for selecting
strategies based on sequence analysis is adopted.

Keywords
Multi-agent architecture, bucket brigade algorithm,
reinforce learning, Cellular Automata Classifer.

1. INTRODUCTION

Although each domain presents a variety of approaches,
from a research perspective the ideal domain embodies
as many issues as possible. Robotic soccer is a
particularly good domain for studying multi-agent
systems. Originated by Alan Mackworth [1], it has been
gaining popularity in recent years with several
international competitions taking place [2]. Even though
robotic soccer is a game, most real-world complexities
are maintained. Some of the distinguishing
characteristics of the domain include: real-time, noisy
with hidden state, collaborative and adversarial goals. It
is the ideal test bed for evaluating different machine
learning techniques in a direct manner, as it provides for
multiple levels of evaluation such as evaluation of low-
level behavior e.g. maneuvering on the field as well as
evaluation of strategic responses to changing scenarios.

Several Multi-agent system scenarios are possible:

• Homogeneous, on-communicating

• Homogeneous, communicating

• Heterogeneous, on-communicating

• Heterogeneous, communicating

Each of which have their own set of challenging research
issues. In homogeneous, non-communicating multi-agent
systems, all of the agents have the same internal structure
including goals, domain knowledge, and possible
actions. They also have the same procedure for selecting
among their actions. The only differences among agents
are their sensory inputs and the actual actions they take:
they are situated differently in the world.

A DNA fragment is usually written as a sequence of
letters A, C, T and G – representing the four nucleotides
Adenine, Cytosine, Thymine and Guanine. DNA is the
master behind all the activities in the cell and is
responsible for the synthesis of proteins. Proteins are
complex macromolecules having a highly complex 3D
structure, but even they are represented in the form of a
single dimensional sequence comprising of 20 different
letters, each representing an amino acid. Hence the
problem of studying DNA and proteins has been reduced
to the problem of sequence analysis.

In this paper, Section-2 gives an overview of related
work. A representation scheme for robotic soccer is
presented in Section-3. An architecture depicting a
homogeneous non-communicating agent utilizing the
above representation is proposed in Section-4. Section-5
discusses experimental results and Section-6 deals with
future directions and concludes the paper.

2. RELATED WORK

 Balch and Arkin [6] use homogeneous, reactive, non-
communicating agents to study formation maintenance in
autonomous robots. The robots' goal is to move together
in a military formation such as a diamond, column, or
wedge. They periodically come across obstacles which
prevent one or more of the robots from moving in a
straight line. After passing the obstacle, all robots must
adjust in order to regain their formation. The actual robot
motion is a simple weighted sum of these vectors.

 26

Levy and Rosenschein [7] create agents that each act in
service of its own goals. They use game theoretic
techniques to find equilibrium points and thus to decide
how to act. These agents are clearly deliberative, as they
search for actions rather than simply retrieving them.

There are also several existing systems and techniques
that mix reactive and deliberative behaviors. One
example is the OASIS system which reasons about when
to be reactive and when to follow goal-directed plans [8].
Another example is reactive deliberation [9]. As the
name implies, it mixes reactive and deliberative
behavior: an agent reasons about which reactive behavior
to follow under the constraint that it must choose actions
at a rate of 60 Hz. Reactive deliberations was developed
on the first robotic soccer platform.

3. SEQUENTIAL REPRESENTATION OF
ROBOTIC SOCCER

The game of robotic soccer involves a vast amount of
data with respect to both player and ball movement. The
movement of the ball during the course of a match is
tracked to obtain a game sequence. Also, each
individual's contribution to the game can be assessed by
focusing on player movements during the game, yielding
a player sequence. This is instrumental in characterizing
a player's contribution to the success or failure of the
game.

Table 1: Task Table

Action Base

Turn towards ball A

Move towards ball C

Kick towards goal G

Pass to team-mate T

For example, we consider a game played over a period of
60 minutes and represent this game as a sequence of
length 60, where each letter represents the player who is
in possession of the ball at that minute. Game 1:
bcgad-bccc-g-aab—bbaggd..

and the Player sequence for player 'a' would be
represented as –

 Player a: ACTTGC-AG--TTCCCA-....

where '-' denotes an idle action or that the ball is in
motion. A history of games played can be collected and
analyzed using the sequence analysis algorithms
employed frequently in bio-informatics. Similarly, a
number of player sequences is obtained for analysis.
These sequences can then be used to formulate
appropriate conditions for classifiers to enable correct
responses to environmental inputs. Table 1 shows the
tasks of different DNA bases.

3.1 Algorithm for Finding Tandem Repeats

The concept of finding tandem repeats has been
employed here to trace subsequences or regions that
frequently repeat in the game and whether such
repetition is ideal for the game.

Table 2: Distinct patterns and their occurrence in
each player sequence

PATTERN NO. OF
OCCURENCES

PLAYER

CACC 4 player-a

ACCC 3 player-b

ACCC 3 player-d

ACCC 5 player-c

CCCC 5 player-a

CCCCB 2 player-b

CCCAGCC 2 player-a

CC-G 3 player-d

It involves two subtasks

• Finding all possible unique subsequences of a

specified length.
• Finding the location and number of tandem repeats.

The input to the first subtask is the starting and ending
lengths of the pattern and the result is the creation of a
list of unique patterns that range from the specified lower
to the upper range. This list becomes the input to the
second stage which checks the provided input sequence
against these patterns for matches. Table 2 gives the
different patterns and occurrences of players.

 27

Fig. 1 : Sequence Driven Classifier System Architecture

Fig 2: The soccer server display. Each player is represented as a two-halved circle. The light side is the side
towards which the player is facing. All players are facing the ball, which is in the middle of the field. The black
bars on the left and right sides of the field are the goals.

 28

Table 3: The Soccer server agent's commands

The agent has just four actuators for physically
manipulating the world: turn, dash, kick and catch. The
server only executes one of these commands for each
player at the end of each simulator cycle. If an agent
sends more than one such command during the same
cycle, only one is executed non-deterministically. Since
the simulator runs asynchronously from the agents, there
is no way to keep perfect time with the server's cycle.
Therefore any given command could be missed by the
server. It is up to the agent to determine whether a given
command has been executed by observing the future
state of the world.

4. PROPOSED WORK

We propose soccer-playing agent architecture with a
sequential analysis component, utilizing the
representation described in the previous section

Shooting Behavior

We make a simple strategy for shooting the ball into the
goal. To shoot the ball to the goal, it is important that the
robot can see both ball and goal. Therefore, the robot
must round the ball until the robot can see both ball and
goal with the camera toward the ball. Finally, the robot
kicks the ball strongly. The concrete procedure of
shooting behavior is follows:

1)Find the ball
2)Approach the ball
While approaching the ball
if the area of the ball > 20 then stop
3)Round the ball
d ßthe direction of the goal
switch(d)
right: clockwise round the ball(AGGGT)
with the camera toward the ball(ACCCT)
left: counterclockwise round the ball(AAACT)

with the camera toward the ball(TTTAC)
if the robot can see both ball and goal then stop
4)Turn the body of the robot towards the ball(ATACT)
5)Kick the ball strongly(AATAA)

4.1. Cellular Automata (CA) and Fuzzy Cellular Automata
(FCA)

 A CA [4], [5], [6], consists of a number of cells organized in
the form of a lattice. It evolves in discrete space and time. The
next state of a cell depends on its own state and the states of its
neighboring cells. In a 3-neighborhood dependency, the next
state qi (t + 1) of a cell is assumed to be dependent only on
itself and on its two neighbors (left and right), and is denoted
as
 qi(t + 1) = f (qi-1(t), qi(t), qi+1(t)) (1)

where qi (t) represents the state of the ith cell at tth instant of
time, f is the next state function and referred to as the rule of
the automata. The decimal equivalent of the next state
function, as introduced by Wolfram, is the rule number of the
CA cell. In a 2-state 3-neighborhood CA, there are total 256
distinct next state functions.

4.1.1 FCA Fundamentals

FCA [2], [6] is a linear array of cells which evolves in
time. Each cell of the array assumes a state qi, a rational
value in the interval [0, 1] (fuzzy states) and changes its
state according to a local evolution function on its own
state and the states of its two neighbors. The degree to
which a cell is in fuzzy states 1 and 0 can be calculated
with the membership functions. This gives more accuracy
in finding the coding regions.In a FCA, the conventional
Boolean functions are AND , OR, NOT.

4.1.2 Dependency Matrix for FCA

Rules defined in equations 1, 2 should be represented as a
local transition function of FCA cell. That rules are
converted into matrix form for easier representation of
chromosomes [16].

Table 4. Rules

Example 1: A 4-cell null boundary hybrid FCA with the
following rule
< 238, 254, 238, 252 > (that is, < (qi+qi+1),
(qi-1+qi+qi+1), (qi + qi+1), (qi- 1 + qi) >) applied fro m

 29

left to right, may be characterized by the following
dependency matrix

While moving from one state to other, the dependency
matrix indicates on which neighboring cells the state
should depend. So cell 254 depends on its state, left
neighbor, and right neighbor fig (1). Now we represented
the transition function in the form of matrix. In the case of
complement FMACA we use another vector for
representation of chromosome.

Fig 3: Matrix Representation

Once we formulated the transition function, we can move
form one state to other. For the example 1 if initial state is
P (0) = (0.80, 0.20, 0.20, 0.00) then the next states will be

P (1) = (1.00 1.00, 0.20, 0.20),
P (2) = (1.00 1.00, 0.40, 0.40),
P (3) = (1.00 1.00, 0.80, 0.80),
P (4) = (1.00 1.00, 1.00, 1.00).

We just introduced the concept of Cellular Automata in
this section. CA is a linear array of cells which evolves
in time. Each cell of the array assumes a state qi, a
rational value in the interval [0, 1] (fuzzy states) and
changes its state according to a local evolution function
on its own state and the states of its two neighbors. The
degree to which a cell is in fuzzy states 1 and 0 can be
calculated with the membership functions. This gives
more accuracy in finding the coding regions. In a FCA,
the conventional Boolean functions are AND , OR,
NOT.

Figure 1,2 shows the architecture of the proposed
sequence-driven classifier system. This system differs
from standard classifier systems [5] in two main ways

4.1.4 FMACA Based Tree-Structured Classifier

Cellular Automata choose the rules carefully after trying
many other possibilities, some of which caused the cells
to die too fast and others which caused too many cells to
be born. Life balances these tendencies, making it hard
to tell whether a pattern will die out completely, form a
stable population, or grow forever. Life is just one
example of a cellular automaton , which is any system
in which rules are applied to cells and their neighbors in
a regular grid.

A good way to get started in Life is to try out different
patterns and see what happens. Even completely random
starting patterns rapidly turn into Life objects
recognizable to anyone with a little experience. In this

section, we follow a simple-looking pattern called the R-
pantomime. It starts out with just five cells, but gets
complicated very fast. We can see many of the early
discoveries in Life just by running this one pattern in the
applet

Like decision tree classifiers, FMACA based tree
structured classifier uses the distinct k-means algorithm
recursively partitions the training set to get nodes
(attractors of a FMACA) belonging to a single class.
Each node (attractor basin) of the tree is either a leaf
indicating a class; or a decision (intermediate) node
which specifies a test on a single FMACA, according to
equations 1,2.

Suppose, we want to design a FMACA based pattern
classifier to classify a training set S = {S 1, S 2, · , SK} into
K classes. First, a FMACA with k-attractor basins is
generated. The training set S is then distributed into k
attractor basins (nodes). Let, S’ be the set of elements in
an attractor basin. If S’ belongs to only one class, then
label that attractor basin for that class. Otherwise, this
process is repeated recursively for each attractor basin
(node) until all the examples in each attractor basin
belong to one class. Tree construction is reported in [7].
The above discussions have been formalized in the
following algorithm. We are using genetic algorithm
classify the training set.

Algorithm 1: FMACA Tree Building (using distinct K
means algorithms)

 Input : Training set S = {S1, S2, · ·, SK}
 Output: FMACA Tree.

Partition(S, K)
Step 1: Generate a FMACA with k number of attractor
basins.
Step 2: Distribute S into k attractor basins (nodes).
Step 3: Evaluate the distribution of examples in each
attractor basin (node).
Step 4: If all the examples (S’) of an attractor basin
(node) belong to only one class, then label the attractor
basin (leaf node) for that class.
Step 5: If examples (S’) of an attractor basin belong to
K’ number of classes, then Partition (S’, K’).
Step 6: Stop.

First, the proposed system adds an event-analysis section
and prepares a record of past game sequences/player
sequences that are analyzed using sequence analysis.

Second, the classifier discovery section using genetic
algorithms targets only actions while the conditions are
generated using information provided by sequence
analysis. The systems also provides for different types of
reward – a large reward for winning matches and smaller
rewards that can be obtained from succeeding in a single
play, such as passing the ball

 30

5. EXPERIMENTAL RESULTS

The Sequence Analysis algorithms were tested on player
and game sequences of varying lengths and distinct sub
sequences yielded the following results from which
various inferences for improving the next match were
made. Client 1 sends movement commands after every
perception it receives. This strategy works out fine in
cycle t-1; but in cycle t it misses the opportunity to act
because it receives no perceptions; and in cycle t+1 it
sends two movement commands, only one of which will
be executed. Client 2, on the other hand, successfully
sends one movement command every cycle. Note that in
cycle t it must act with no new perceptual information,
while in cycle t+1, it receives two perceptions prior to
acting and one afterwards. Ideally, it would act after
receiving and taking into account all three perceptions.
However, it does not know precisely when the simulator
cycle will change internally in the soccer server and it
cannot know ahead of time when it will receive
perceptions. Thus, in exchange for the ability to act
every simulator cycle, it sometimes acts with less than
the maximal amount of information about the world.
However, as each simulator cycle represents only a short
amount of real time (simulator_step msec), the world
does not change very much from cycle to cycle, and the
client can act accurately even if it takes some of its
perceptions into account only before its subsequent
action.

Figure 4: A sample period of the server-client interface
over the course of 3 simulator cycles at times t-1, t, and
t+1. The thick central horizontal line represents the real
time as kept by the server. The top and bottom horizontal
lines represent the time -lines of two separate clients. The
dashed arrows from the server towards a client represent
perceptions for that client. The solid arrows from a client
towards the server represent movement commands sent
by that client. These arrows end at the point in time at
which the server executes the movement commands,
namely the end of the simulator cycle during which they
are sent.

Asynchronous sensing and acting, especially when the
sensing can happen at unpredictable intervals, is a very
challenging paradigm for agents to handle. Agents must
balance the need to act regularly and as quickly as
possible with the need to gather information about the
environment. Along with asynchronous sensing and
action, the soccer server captures several other real-

world complexities, as will become evident throughout
the remainder of this section.

Fig 5: Entropy & Mutation information for n=10

These results were translated into strength values and
directly modified within the LCS. In order to justify that
this proposed architecture is indeed faster at learning
targeted behavior at a much faster pace, “Clean Slate”
experimental conditions were maintained. The Classifier
rule set initially is completely randomly generated – to
simulate a blank knowledge base. The rule set is then
generated prior to the first iteration and the LCS was run
for up to 200,000 iterations. Initialization parameters for
the Genetic Algorithm specify the algorithm to run every
4000 iterations – this interval is necessary so that the
strengths of the rule sets are given time to stabilize after
credit apportionment.

The figure shows the application of the algorithm for a
single game which when applied to hundreds of games,
useful inferences could be made. The patterns thus
identified through the application of tandem repeats
algorithm served to identify the risk of threats and goals
thereby enabling dynamic decision making in future
games with reference to past history of games played.
The goal sequences identified were xxCCT, where x
represents any of the 4 characters. The following is a
table showing the sequences that are likely to occur in
the case of a goal or threat and their percentage of
occurrences.

 31

Table 4: Distinct patterns and their number of
occurrences in each player sequence

PATTERN NO. OF
OCCURENCES

PLAYER

 CACC 4 player-a

ACCC 3 player-b

ACCC 3 player-d

ACCC 5 player-c

CCCC 5 player-a

CCCCB 2 player-b

CCCAGCC 2 player-a

CC-G 3 player-d

The motion of CA rule space in successive generations is
characterized by evaluating the entropy and mutual
information of CA rule vectors of a population. The rule
vectors for study are sampled out at a gap of 5
generations. The top most fit rule vectors of the selected
population is subjected to closer scrutiny.

The entropy and mutual information of the CA in
successive generations of GA are reported in Fig 5,6 ,7,8
for four different CA size (n= 10, 15, 20, 30). For each
of the cases, the values of entropy and mutual
information reach their steady state once the AIS
FMACA for a given pattern set gets evolved. For
understanding the motion, the initial population (IP) is
randomly generated. All these figures points to the fact
that as the CA evolve towards the desired goal of
maximum pattern recognizing capability, the entropy
values fluctuate in the intermediate generations, but
saturate to a particular value (close to the critical value
0·84 [245]) when fit rule is obtained. Simultaneously, the
values of mutual information fluctuate at the
intermediate points prior to reaching maximum value
that remains stable in subsequent generations. All these
figures indicate that the CA move from chaotic region to
the edge of chaos to perform complex computation
associated with pattern recognition.

Fig 6: Entropy & Mutation information for n=15

Fig 7: Entropy & Mutation information for n=20

Fig 8: Entropy & Mutation information for n=30

 32

Table 3 shows the application of the algorithm for a
single game which when applied to hundreds of games,
useful inferences could be made. The patterns thus
identified through the application of tandem repeats
algorithm served to identify the risk of threats and goals
thereby enabling dynamic decision making in future
games with reference to past history of games played.
The goal sequences identified were xxCCT, where x
represents any of the 4 characters. The following is a
table showing the sequences that are likely to occur in
the case of a goal or threat and their percentage of
occurrences.

The goal sequences were identified by application of the
algorithm for finding tandem repeats. These sequences
were in turn checked using the algorithm for Trans-
membrane region to find the percentage of occurrences
of these patterns in multiple numbers of games.

Table 3: Percentage of occurrence of Goal and Threat
sequences

SEQUE
NCES

95% 75% 50% < 50%

Goal
(xxCCT)

TCCC
T

CACCT CxCCT CCAT

Threat CTCC
C

CCACC CCxCC GCAC

The Learning classifier system was first tested by first
evolving completely random classifier rules and then
placed in the environment to gage the learning rate.
Figure 2 shows the proportion of correct actions
proposed by the learning classifier system versus the
time epochs taken. Subsequent experiments were
conducted by constructing a history of 10,000 games –
and the performance of the classifier system was
observed.

Fig 7. shows the performance of LCS, an accuracy rate
of nearly 75% was obtained after merely 100,000
iterations. This is observed to be far less when compared
to other agent learning mechanisms based on
reinforcement learning. Given a good balance between
desired accuracy and training time, this technique will
yield a good “knowledge base” of conditions and actions
upon which the agent will base all its responses .

 Fig 9. Graph (Proportion Correct VS Iterations)

6. CONCLUSION

The advantage of adopting sequence analysis for
evaluating strategy is that the analysis is capable of
distinguishing individual strategy of an agent as well the
overall strategic play of the team as such. This approach
could easily be adapted towards developing squad-based
tactics of team behavior evolution, by evolving specific
strategies for specific groups - for example, creating a
group of defenders whose overall goal is to defend their
goal, and a squad of offensive players whose only aim is
to target the opposing team's goal. Furthermore, use of
advanced genetic operations during the discovery stages
could enable the classifier system to discover better
actions within a smaller time -bound and improve the
real-time response of the system.

A representation scheme for robotic soccer in the form of
biological sequence has been presented. Two new
algorithms to find repeating patterns and ideal game
strategies similar to biological problems have been
developed and tried on the sequences generated. A
number of sequences has been generated from various
games played and the algorithms proved effective in
analysing various repeating patterns before a goal and
finding faulty moves. Interesting sub-problems, such as
stamina conservation of players have been identified and
solutions have been proposed using the above
representation scheme and associated algorithms –
Moves that result in increased stamina expenditure have
been identified and removed from player sequences. An
agent learning Architecture has been proposed using the
above representation scheme. Enhancements to the Rule
discovery components and the Credit apportionment
schemes have been shown to yield positive results and
improvements in agent learning times.

The current drawbacks of the presented scheme is the
added overhead of human intervention and the resulting
loss of automation. The immediate area for improvement
would be to have some sort of database that include
some predetermined knowledge about the desired actions
and enabling automated lookup by the sequence analysis

 33

algorithms to best select sub-sequences based on the data
stored in the database. Further enhancements to the
Genetic algorithm would also be possible with regards to
selection criteria.

REFERENCES

[1] Michael Sahota, Alan K. Mackworth, Rod A.

Barman, and Stewart J. Kingdon , “Real-time
control of soccer-playing robots using off-board
vision: the dynamite testbed”, IEEE
International Conference on Systems, Man, and
Cybernetics, pages 1995 ,3690-3663.

[2] Hiroaki Kitano, Yasuo Kuniyoshi, Itsuki Noda,
Minoru Asada, Hitoshi Matsubara, and Ei-Ichi
Osawa, “ Robocup: A challenge problem for ai
”, AI Magazine, Volume 18(Issue 1), 1997,pp.
73-85.

[3] Needleman, S.B., Wunsch C.D., “A general method
applicable to the search for similarities in the
amino acid sequences of two proteins”,
Journal of Molecular Biology Volume 48, 2000,
pp. 443-453.

[4] Smith T.F, Waterman M.S., “Identification of
common molecular subsequences” Journal of
Molecular Biology, Volume 14, 1998,pp.95-
197.

[5] Goldberg, D.E. , “ Genetic algorithms in Search
,Optimization and Machine Learning ”,
Addison-Wesley, 1989,Reading.

[6] Tucker Balch and Ronald C. Arkin. , “ Motor
schema-based formation control for multi agent
robot teams ”, Proceedings of the First
International Conference on Multi-Agent
Systems ICMAS-95, 1995,pp. 10-16.

[7] Ran Levy and Jeffrey S. Rosenschein , ”A game
theoretic approach to the pursuit problem ”,
Working Papers of the 11th International
Workshop on Distributed Artificial Intelligence ,
1992,pp.195-21.

[8] Anand S. Rao and Michael P. George , ” BDI
agents: From theory to practice.”, Proceedings
of the First International Conference on Multi-
Agent Systems ICMAS-95, 1995, pp. 31

[9] Michael K. Sahota. , “Reactive deliberation: An
architecture for real-time intelligent control in
dynamic environments”, Proceedings of the
Twelfth National Conference on Artificial
Intelligence, pages 1303-1308,1994, pp. 184,
185, 202.

[10]P.Kiran Sree, I .Ramesh Babu ,”Identification of
Protein Coding Regions in Genomic DNA
Using Unsupervised FMACA Based Pattern
Classifier” in International Journal of Computer
Science & Network Security with ISSN: 1738-
7906 Volume Number: Vol.8, No.1,2008.

[11]P.Kiran Sree, R.Ramachandran, “Identification of
Protein Coding Regions in Genomic DNA
Using Supervised Fuzzy Cellular Automata”.in
International journal of Advances in

Computer Science and Engineering, with ISSN:
0973-6999, Vol: 1,2008.

[12] Eric E. Snyder ,Gary D. Stormo, “ Identification of
Protein Coding Regions In Genomic
DNA”.ICCS Transactions 2002.

[13] E E Snyder and G D Stormo,”Identification of
coding regions in genomic DNA sequences: an
application of dynamic programming and neural
networks “ Nucleic Acids Res. 1993 February
11; 21(3): 607–613.

[14] P. Flocchini, F. Geurts, A. Mingarelli, and N.
Santoro (2000),“Convergence and
Aperiodicity in Fuzzy Cellular Automata:
Revisiting Rule 90,”Physica D.

[15] P. Maji and P. P. Chaudhuri (2004),“FMACA: A
Fuzzy Cellular Automata Based Pattern
Classifier,” Proceedings of 9th International
Conference on Database Systems , Korea, pp.
494–505, 2004.

[16] C.G. Langton (2000), “Self-reproduction in cellular
automata,” Physica D, vol.10, pp.135–144.

[17]T. Toffoli(1998), “Reversible computing,” in
Automata, Languages and Programming,
ed. J.W. De Bakker and J. Van Leeuwen,
pp.632–644.

[18]G. Vichniac(1994), “Simulating physics with
cellular automata,” Physica D,vol.10, pp.96–
115.

 [19] S. Chattopadhyay, S. Adhikari, S. Sengupta, and M.
Pal (2000), “Highly regular, modular, and
cascadable design of cellular automata-based
pattern classifier,” IEEE Trans. Very Large
Scale Integr. Syst., vol.8, no.6,

[20]J. Fickett (1982), “Recognition of protein coding
regions in dna sequences,”Nucleic Acids Res .,
vol. 10, pp. 5303–5318.

[21]B. E. Blaisdell(1983), “A prevalent persistent global
non randomness that distinguishes coding
and non-coding eukaryotic nuclear dna
sequence,” J. Molec. Evol., vol. 19, pp. 122–
133.

[22] R. Farber, A. Lapedes, and K. Sirotkin(1992),
“Determination of eukaryotic protein
coding regions using neural networks and
information theory,” J. Mol. Biol., vol. 226, pp.
471–479.

[23]E. Uberbacher and R. Mural(1991), “Locating
protein-coding regions in human dna sequences
by a multiple sensor-neural network approach,”
Proc. Natl. Acad. Sci., USA, vol. 88, pp. 11261–
11265.

[24] Aickelin U and Cayzer S (2002): The Danger
Theory and Its Application to AIS, Proceedings
1st International Conference on AIS, pp 141-
148, Canterbury, UK.

[25] D. Dasgupta, 1999. Artificial Immune Systems and
Their Application. Berlin, Germany: Springer-
verlag.

 34

[26] de Castro. L. N., and Timmis, J, 2002, ‘Artificial
Immune Systems: A New Computational
Intelligence Approach’, Springer-Verlag.

[27] KrishnaKumar, K., Kaneshige, J., and Satyadas, A.,
“Challenging Aerospace Problems for
Intelligent Systems,” Proceedings of the von
Karman Lecture series on Intelligent Systems
for Aeronautics, Belgium, May 2002.

[28] P.Kiran Sree, NPCRIT: A Novel Protein Coding
Region Identifying Tool using Decision Tree
Classifier with Trust-Region Method & Parallel
Scan Algorithm, IEEE International Conference
.(BIOTECHNO 2008). Proceeding published by
IEEE Computer Society Press. (Accepted)

[29] Mitchison, N. A. (1994), “Cognitive Immunology”,
The Immunologist, 2/4, pp. 140-141.

[30]Tauber, A. I. (1997), “Historical and Philosophical
Perspectives on Immune Cognition”, Journal of
the History of Biology, 30, pp. 419-440.

[22] Jerne, N. K. (1974), “Towards a Network Theory of
the Immune System”, Ann. Immunol. (Inst.
Pasteur) 125C, pp. 373-389.

[31]Farmer, J. D., N. H. Packard, et al. (1986). "The
Immune System, Adaptation, and Machine
Learning." Physica 22(D): 187-204.

[32] Timmis, J. and M. Neal (2001). "A resource limited
artificial immune system for data analysis."
Knowledge Based Systems 14(3-4): 121-130.

[33] Ph. Tsalides, T. A. York, and A. Thanailakis.
Pseudo-random Number Generators for VLSI
Systems based on Linear Ce llular Automata.
IEE Proc. E. Comput. Digit. Tech., 138(4):241–
249, 1991.

[34] Marco Tomassini and Mattias Venzi. Artificially
Evolved Asynchronous Cellular Automata for
the Density Task. Proceedings of Fifth
International Conference on Cellular Automata
for Research and Industry, ACRI 2002,
Switzerland, pages 44–55, October 2002.

[35] N. Tolstrup, J. Toftgard, J. Engelbrecht, and S.
Brunak. Neural network model of the genetic
code is strongly correlated to the ges scale of
amino-acid transfer free-energies. J. Mol. Biol.,
243:816–820, 1994.

[28] S. Tan, J. Hao, and J. Vandewalle. Determination of
weights for hopfield associative memory by
error back propagation. In Proc. IEEE Int.
Symp. Circuits Systems, 5:2491, 1991.

[36] H. Szu. Fast TSP Algorithm based on Binary
Neuron Output and Analog Input using Zero-
diagonal Interconnect Matrix and Necessary
and Sufficient Conditions of the Permutation
matrix. In IEEE International Conference on
Neural Networks, pages 259–266, 1988.

[37] S. R. Sternberg. Language and architecture for
parallel image processing, page 35. North
Holland, Amsterdam, 1980.

P.KIRAN SREE received his
B.Tech in Computer Science &
Engineering, from J.N.T.U and
M.E in Computer Science &
Engineering from Anna
University. He has published
many technical papers; both in
international and national
Journals .His areas of interests
include Paralle l Algorithms,
Artificial Intelligence, Compile

Design and Computer Networks. He also wrote books on
Analysis of Algorithms, Theory of Computation and
Artificial Intelligence. He was the reviewer for many
IEEE Society Conferences in Artificial Intelligence and
Networks. He was also member in many International
Technical Committees. He was the technical editor for
Journal of Artificial Intelligence, Journal of Software
Engineering, Research Journal of Information
Technology, and Information Technology Journal. He is
now associated with S.R.K Institute of Technology,
Vijayawada.

