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ABSTRACT 
 
This paper reports on the application of sequence 
analysis algorithms for agents in robotic soccer and a 
suitable representation is proposed to achieve this 
mapping. The objective of this research is to generate 
novel better in-game strategies with the aim of faster 
adaptation to the changing environment. A 
homogeneous non-communicating multi -agent 
architecture using the representation is presented. To 
achieve real-time learning during a game, a bucket 
brigade algorithm is used to reinforce Cellular 
Automata Based Classifier. A technique for selecting 
strategies based on sequence analysis is adopted. 
 
Keywords  
Multi-agent architecture, bucket brigade algorithm, 
reinforce learning, Cellular Automata Classifer. 
 
1.  INTRODUCTION 
 
Although each domain presents a variety of approaches, 
from a research perspective the ideal domain embodies 
as many issues as possible. Robotic soccer is a 
particularly good domain for studying multi-agent 
systems. Originated by Alan Mackworth [1], it has been 
gaining popularity in recent years with several 
international competitions taking place [2]. Even though 
robotic soccer is a game, most real-world complexities 
are maintained. Some of the distinguishing 
characteristics of the domain include: real-time, noisy 
with hidden state, collaborative and adversarial goals. It 
is  the ideal test bed for evaluating different machine 
learning techniques in a direct manner, as it provides for 
multiple levels of evaluation such as evaluation of low-
level behavior e.g. maneuvering on the field as well as 
evaluation of strategic responses to changing scenarios. 
   
Several Multi-agent system scenarios are possible:  
 

• Homogeneous, on-communicating  

• Homogeneous, communicating 

• Heterogeneous, on-communicating  

• Heterogeneous, communicating 

 
Each of which have their own set of challenging research 
issues. In homogeneous, non-communicating multi-agent 
systems, all of the agents have the same internal structure 
including goals, domain knowledge, and possible 
actions. They also have the same procedure for selecting 
among their actions. The only differences among agents 
are their sensory inputs and the actual actions they take: 
they are situated differently in the world. 
 
A DNA fragment is usually written as a sequence of 
letters A, C, T and G – representing the four nucleotides 
Adenine, Cytosine, Thymine and Guanine. DNA is the 
master behind all the activities in the cell and is 
responsible for the synthesis of proteins. Proteins are 
complex macromolecules having a highly complex 3D 
structure, but even they are represented in the form of a 
single dimensional sequence comprising of 20 different 
letters, each representing an amino acid. Hence the 
problem of studying DNA and proteins has been reduced 
to the problem of sequence analysis. 
    
In this paper, Section-2 gives an overview of related 
work. A representation scheme for robotic soccer is 
presented in Section-3. An architecture depicting a 
homogeneous non-communicating agent utilizing the 
above representation is proposed in Section-4. Section-5 
discusses experimental results and Section-6 deals with 
future directions and concludes the paper. 
 
2.  RELATED WORK 
 
 Balch and Arkin [6] use homogeneous, reactive, non-
communicating agents to study formation maintenance in 
autonomous robots. The robots' goal is to move together 
in a military formation such as  a diamond, column, or 
wedge. They periodically come across obstacles which 
prevent one or more of the robots from moving in a 
straight line. After passing the obstacle, all robots must 
adjust in order to regain their formation. The actual robot 
motion is a simple weighted sum of these vectors. 
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Levy and Rosenschein [7] create agents that each act in 
service of its own goals. They use game theoretic 
techniques to find equilibrium points and thus to decide 
how to act. These agents are clearly deliberative, as they 
search for actions rather than simply retrieving them. 
 
There are also several existing systems and techniques 
that mix reactive and deliberative behaviors. One 
example is the OASIS system which reasons about when 
to be reactive and when to follow goal-directed plans [8]. 
Another example is reactive deliberation [9]. As the 
name implies, it mixes reactive and deliberative 
behavior: an agent reasons about which reactive behavior 
to follow under the constraint that it must choose actions 
at a rate of 60 Hz. Reactive deliberations was developed 
on the first robotic soccer platform. 
 
3. SEQUENTIAL REPRESENTATION OF 
ROBOTIC SOCCER 
 
The game of robotic soccer involves a vast amount of 
data with respect to both player and ball movement. The 
movement of the ball during the course of a match is 
tracked to obtain a game sequence. Also, each 
individual's contribution to the game can be assessed by 
focusing on player movements during the game, yielding 
a player sequence. This is instrumental in characterizing 
a player's contribution to the success or failure of the 
game. 
 

Table 1: Task Table 
 

Action Base 

Turn towards ball A 

Move towards ball C 

Kick towards goal G 

Pass to team-mate T 

 
For example, we consider a game played over a period of 
60 minutes and represent this game as a sequence of 
length 60, where each letter represents the player  who is 
in possession of the ball at that minute.       Game 1: 
bcgad-bccc-g-aab—bbaggd.. 
 
and the Player sequence for player 'a' would be 
represented as – 
 

       Player a: ACTTGC-AG--TTCCCA-.... 
 
where '-' denotes an idle action or that the ball is in 
motion. A history of games played can be collected and 
analyzed using the sequence analysis algorithms 
employed frequently in bio-informatics. Similarly, a 
number of player sequences is obtained for analysis. 
These sequences can then be used to formulate 
appropriate conditions for classifiers to enable correct 
responses to environmental inputs. Table 1 shows the 
tasks of different DNA bases. 
 
3.1 Algorithm for Finding Tandem Repeats  
 
The concept of finding tandem repeats has been 
employed here to trace subsequences or regions that 
frequently repeat in the game and whether such 
repetition is ideal for the game.  
 

Table 2: Distinct patterns and their occurrence in 
each player sequence 

PATTERN NO. OF 
OCCURENCES 

PLAYER 

CACC 4 player-a 

ACCC 3 player-b 

ACCC 3 player-d 

ACCC 5 player-c 

CCCC 5 player-a 

CCCCB 2 player-b 

CCCAGCC 2 player-a 

CC-G 3 player-d 
 
It involves two subtasks 
 
• Finding all possible unique subsequences of a 

specified length. 
• Finding the location and number of tandem repeats. 

 
 

The input to the first subtask is the starting and ending 
lengths of the pattern and the result is the creation of a 
list of unique patterns that range from the specified lower 
to the upper range. This list becomes the input to the 
second stage which checks the provided input sequence 
against these patterns for matches. Table 2 gives the 
different patterns and occurrences of players. 
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Fig. 1 : Sequence Driven Classifier System Architecture 

 
 

 
 

 
Fig 2: The soccer server display. Each player is represented as a two-halved circle.   The light side is the side 
towards which the player is facing. All players are facing the ball, which is in the middle of the field. The black 
bars on the left and right sides of the field are the goals. 
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Table 3: The Soccer server agent's commands 

 
 
  
The agent has just four actuators for physically 
manipulating the world: turn, dash, kick  and catch. The 
server only executes one of these commands for each 
player at the end of each simulator cycle. If an agent 
sends more than one such command during the same 
cycle, only one is executed non-deterministically. Since 
the simulator runs asynchronously from the agents, there 
is no way to keep perfect time with the server's cycle. 
Therefore any given command could be missed by the 
server. It is up to the agent to determine whether a given 
command has been executed by observing the future 
state of the world. 
 
 
4. PROPOSED WORK 

 
We propose soccer-playing agent architecture with a 
sequential analysis component, utilizing the 
representation described in the previous section 
 
Shooting Behavior 
 
We make a simple strategy for shooting the ball into the 
goal. To shoot the ball to the goal, it is important that the 
robot can see both ball and goal. Therefore, the robot 
must round the ball until the robot can see both ball and 
goal with the camera toward the ball. Finally, the robot 
kicks the ball strongly. The concrete procedure of 
shooting behavior is follows: 
 
1)Find the ball 
2)Approach the ball 
While approaching the ball 
if the area of the ball > 20 then stop 
3)Round the ball 
d ßthe direction of the goal 
switch(d) 
right: clockwise round the ball(AGGGT) 
with the camera toward the ball(ACCCT) 
left: counterclockwise round the ball(AAACT) 

with the camera toward the ball(TTTAC) 
if the robot can see both ball and goal then stop 
4)Turn the body of the robot towards the ball(ATACT) 
5)Kick the ball strongly(AATAA) 
 

4.1. Cellular Automata (CA) and Fuzzy Cellular Automata 
(FCA) 
 
 A CA [4], [5], [6], consists of a number of cells organized in 
the form of a lattice. It evolves in discrete space and time. The 
next state of a cell depends on its own state and the states of its 
neighboring cells. In a 3-neighborhood dependency, the next 
state qi (t + 1) of a cell is assumed to be dependent only on 
itself and on its two neighbors (left and right), and is denoted 
as  
         qi(t + 1) = f (qi-1(t), qi(t), qi+1(t))            (1) 
 
where qi (t) represents the state of the ith cell at tth instant of 
time, f is the next state function and referred to as the rule of 
the automata. The decimal equivalent of the next state 
function, as introduced by Wolfram, is the rule number of the 
CA cell. In a 2-state 3-neighborhood CA, there are total 256 
distinct next state functions.  
 
4.1.1 FCA Fundamentals 
 
FCA [2], [6] is a linear array of cells which evolves in 
time. Each cell of the array assumes a state qi, a rational 
value in the interval [0, 1] (fuzzy states) and changes its 
state according to a local evolution function on its own 
state and the states of its two neighbors.  The degree to 
which a cell is in fuzzy states 1 and 0 can be calculated 
with the membership functions. This gives more accuracy 
in finding the coding regions.In a FCA, the conventional 
Boolean functions are AND , OR, NOT.       
 
4.1.2 Dependency Matrix for FCA 
 

Rules defined in equations 1, 2 should be represented as a 
local transition function of FCA cell. That rules are 
converted into matrix form for easier representation of 
chromosomes [16].         
              

Table 4. Rules 

 
 

Example 1: A 4-cell null boundary hybrid FCA with the 
following rule  
< 238, 254, 238, 252 > (that is, < (qi+qi+1), 
(qi-1+qi+qi+1), (qi + qi+1), (qi- 1 + qi) >) applied fro m 
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left to right, may be characterized by the following 
dependency matrix 
 

While moving from one state to other, the dependency 
matrix indicates on which neighboring cells the state 
should depend. So cell 254 depends on its state, left 
neighbor, and right neighbor fig (1). Now we represented 
the transition function in the form of matrix. In the case of 
complement FMACA we use another vector for 
representation of chromosome. 
 

 
Fig 3: Matrix Representation 

 
Once we formulated the transition function, we can move 
form one state to other. For the example 1 if initial state is 
P (0) = (0.80, 0.20, 0.20, 0.00) then the next states will be  
 
P (1) = (1.00 1.00, 0.20, 0.20), 
P (2) = (1.00 1.00, 0.40, 0.40), 
P (3) = (1.00 1.00, 0.80, 0.80), 
P (4) = (1.00 1.00, 1.00, 1.00). 
 
We just introduced  the concept of Cellular Automata in 
this section. CA  is a linear array of cells which evolves 
in time. Each cell of the array assumes a state qi, a 
rational value in the interval [0, 1] (fuzzy states) and 
changes its state according to a local evolution function 
on its own state and the states of its two neighbors.  The 
degree to which a cell is in fuzzy states 1 and 0 can be 
calculated with the membership functions. This gives 
more accuracy in finding the coding regions. In a FCA, 
the conventional Boolean functions are AND , OR, 
NOT.   
 
Figure 1,2 shows the architecture of the proposed 
sequence-driven classifier system. This system differs 
from standard classifier systems [5] in two main ways 
 
4.1.4  FMACA Based Tree-Structured Classifier 
 
Cellular Automata choose the rules carefully after trying 
many other possibilities, some of which caused the cells 
to die too fast and others which caused too many cells to 
be born. Life balances these tendencies, making it hard 
to tell whether a pattern will die out completely, form a 
stable population, or grow forever. Life is just one 
example of a cellular automaton , which is any system 
in which rules are applied to cells and their neighbors in 
a regular grid. 
 
A good way to get started in Life is to try out different 
patterns and see what happens. Even completely random 
starting patterns rapidly turn into Life objects 
recognizable to anyone with a little experience. In this 

section, we follow a simple-looking pattern called the R-
pantomime. It starts out with just five cells, but gets 
complicated very fast. We can see many of the early 
discoveries in Life just by running this one pattern in the 
applet 

 
Like decision tree classifiers, FMACA based tree 
structured classifier uses the distinct k-means algorithm 
recursively partitions the training set to get nodes 
(attractors of a FMACA) belonging to a single class. 
Each node (attractor basin) of the tree is either a leaf 
indicating a class; or a decision (intermediate) node 
which specifies a test on a single FMACA, according to 
equations 1,2. 
 
Suppose, we want to design a FMACA based pattern 
classifier to classify a training set S = {S 1, S 2, · , SK} into 
K classes. First, a FMACA with k-attractor basins is 
generated. The training set S is then distributed into k 
attractor basins (nodes). Let, S’ be the set of elements in 
an attractor basin. If S’ belongs to only one class, then 
label that attractor basin for that class. Otherwise, this 
process is repeated recursively for each attractor basin 
(node) until all the examples in each attractor basin 
belong to one class. Tree construction is reported in [7]. 
The above discussions have been formalized in the 
following algorithm. We are using genetic algorithm 
classify the training set. 
 
 
Algorithm 1: FMACA Tree Building (using distinct K 
means algorithms) 
 
 Input   :      Training set S = {S1, S2, · ·, SK} 
 Output:      FMACA Tree. 
 
Partition(S, K) 
Step 1: Generate a FMACA with k number of attractor 
basins. 
Step 2: Distribute S into k attractor basins (nodes). 
Step 3: Evaluate the distribution of examples in each 
attractor basin (node). 
Step 4: If all the examples (S’) of an attractor basin 
(node) belong to only one class, then label the attractor 
basin (leaf node) for that class. 
Step 5: If examples (S’) of an attractor basin belong to 
K’ number of classes, then Partition (S’, K’). 
Step 6: Stop. 
 
First, the proposed system adds an event-analysis section 
and prepares a record of past game sequences/player 
sequences that are analyzed using sequence analysis.  

 
Second, the classifier discovery section using genetic 
algorithms targets only actions while the conditions are 
generated using information provided by sequence 
analysis. The systems also provides for different types of 
reward – a large reward for winning matches and smaller 
rewards that can be obtained from succeeding in a single 
play, such as passing the ball 
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5.   EXPERIMENTAL RESULTS 

 
The Sequence Analysis algorithms were tested on player 
and game sequences of varying lengths and distinct sub 
sequences yielded the following results from which 
various inferences for improving the next match were 
made. Client 1 sends movement commands after every 
perception it receives. This strategy works out fine in 
cycle t-1; but in cycle t it misses the opportunity to act 
because it receives no perceptions; and in cycle t+1 it 
sends two movement commands, only one of which will 
be executed. Client 2, on the other hand, successfully 
sends one movement command every cycle. Note that in 
cycle t it must act with no new perceptual information, 
while in cycle t+1, it receives two perceptions prior to 
acting and one afterwards. Ideally, it would act after 
receiving and taking into account all three perceptions. 
However, it does not know precisely when the simulator 
cycle will change internally in the soccer server and it 
cannot know ahead of time when it will receive 
perceptions. Thus, in exchange for the ability to act 
every simulator cycle, it sometimes acts with less than 
the maximal amount of information about the world. 
However, as each simulator cycle represents only a short 
amount of real time (simulator_step msec), the world 
does not change very much from cycle to cycle, and the 
client can act accurately even if it takes some of its 
perceptions into account only before its subsequent 
action. 

 
Figure 4: A sample period of the server-client interface 
over the course of 3 simulator cycles at times t-1, t, and 
t+1. The thick central horizontal line represents the real 
time as kept by the server. The top and bottom horizontal 
lines represent the time -lines of two separate clients. The 
dashed arrows from the server towards a client represent 
perceptions for that client. The solid arrows from a client 
towards the server represent movement commands sent 
by that client. These arrows end at the point in time at 
which the server executes the movement commands, 
namely the end of the simulator cycle during which they 
are sent. 
 
Asynchronous sensing and acting, especially when the 
sensing can happen at unpredictable intervals, is a very 
challenging paradigm for agents to handle. Agents must 
balance the need to act regularly and as quickly as 
possible with the need to gather information about the 
environment. Along with asynchronous sensing and 
action, the soccer server captures several other real-

world complexities, as will become evident throughout 
the remainder of this section. 

 

 
 

Fig 5:  Entropy & Mutation information for n=10 
 
These results were translated into strength values and 
directly modified within the LCS.  In order to justify that 
this proposed architecture is indeed faster at learning 
targeted behavior at a much faster pace, “Clean Slate” 
experimental conditions were maintained. The Classifier 
rule set initially is completely randomly generated – to 
simulate a blank knowledge base. The rule set is then 
generated prior to the first iteration and the LCS was run 
for up to 200,000 iterations. Initialization parameters for 
the Genetic Algorithm specify the algorithm to run every 
4000 iterations – this interval is necessary so that the 
strengths of the rule sets are given time to stabilize after 
credit apportionment. 
 
The figure shows the application of the algorithm for a 
single game which when applied to hundreds of games, 
useful inferences could be made. The patterns thus 
identified through the application of tandem repeats 
algorithm served to identify the risk of threats and goals 
thereby enabling dynamic decision making in future 
games with reference to past history of games played. 
The goal sequences identified were xxCCT, where x 
represents any of the 4 characters. The following is a 
table showing the sequences that are likely to occur in 
the case of a goal or threat and their percentage of 
occurrences. 
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Table 4: Distinct patterns and their number of     
occurrences in each player sequence 

PATTERN NO. OF 
OCCURENCES 

PLAYER 

 CACC 4 player-a 

ACCC 3 player-b 

ACCC 3 player-d 

ACCC 5 player-c 

CCCC 5 player-a 

CCCCB 2 player-b 

CCCAGCC 2 player-a 

CC-G 3 player-d 

 
The motion of CA rule space in successive generations is 
characterized by evaluating the entropy and mutual 
information of CA rule vectors of a population. The rule 
vectors for study are sampled out at a gap of 5 
generations. The top most fit rule vectors of the selected 
population is subjected to closer scrutiny. 
 
The entropy and mutual information of the CA in 
successive generations of GA are reported in Fig 5,6 ,7,8 
for four different CA size (n= 10, 15, 20, 30). For each 
of the cases, the values of entropy and mutual 
information reach their steady state once the AIS 
FMACA for a given pattern set gets evolved. For 
understanding the motion, the initial population (IP) is 
randomly generated. All these figures points to the fact 
that as the CA evolve towards the desired goal of 
maximum pattern recognizing capability, the entropy 
values fluctuate in the intermediate generations, but 
saturate to a particular value (close to the critical value 
0·84 [245]) when fit rule is obtained. Simultaneously, the 
values of mutual information fluctuate at the 
intermediate points prior to reaching maximum value 
that remains stable in subsequent generations. All these 
figures indicate that the CA move from chaotic region to 
the edge of chaos to perform complex computation 
associated with pattern recognition. 
 

 
 
Fig  6:  Entropy & Mutation information for n=15 
 
 

 
 
Fig  7:  Entropy & Mutation information for n=20 
 
 

 
 
Fig 8:  Entropy & Mutation information for n=30 
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Table 3 shows the application of the algorithm for a 
single game which when applied to hundreds of games, 
useful inferences could be made. The patterns thus 
identified through the application of tandem repeats 
algorithm served to identify the risk of threats and goals 
thereby enabling dynamic decision making in future 
games with reference to past history of games played. 
The goal sequences identified were xxCCT, where x 
represents any of the 4 characters. The following is a 
table showing the sequences that are likely to occur in 
the case of a goal or threat and their percentage of 
occurrences. 
 
The goal sequences were identified by application of the 
algorithm for finding tandem repeats. These sequences 
were in turn checked using the algorithm for Trans-
membrane region to find the percentage of occurrences 
of these patterns in multiple numbers of games. 
 

Table 3: Percentage of occurrence of Goal and Threat 
sequences 

SEQUE
NCES 

95% 75% 50% < 50% 

Goal 
(xxCCT) 

TCCC
T 

CACCT CxCCT CCAT 

Threat CTCC
C 

CCACC CCxCC GCAC 

 
The Learning classifier system was first tested by first 
evolving completely random classifier rules and then 
placed in the environment to gage the learning rate. 
Figure 2 shows the proportion of correct actions 
proposed by the learning classifier system versus the 
time epochs taken. Subsequent experiments were 
conducted by constructing a history of 10,000 games – 
and the performance of the classifier system was 
observed.   
 
Fig 7. shows the performance of LCS, an accuracy rate 
of nearly 75% was obtained after merely 100,000 
iterations. This is observed to be far less when compared 
to other agent learning mechanisms based on 
reinforcement learning. Given a good balance between 
desired accuracy and training time, this technique will 
yield a good “knowledge base” of conditions and actions 
upon which the agent will base all its responses . 
 

 
     Fig 9. Graph (Proportion Correct VS Iterations) 
 
6. CONCLUSION 
 
The advantage of adopting sequence analysis for 
evaluating strategy is that the analysis is capable of 
distinguishing individual strategy of an agent as well the 
overall strategic play of the team as such. This approach 
could easily be adapted towards developing squad-based 
tactics of team behavior evolution, by evolving specific 
strategies for specific groups - for example, creating a 
group of defenders whose overall goal is to defend their 
goal, and a squad of offensive players whose only aim is 
to target the opposing team's goal. Furthermore, use of 
advanced genetic operations during the discovery stages 
could enable the classifier system to discover better 
actions within a smaller time -bound and improve the 
real-time response of the system. 
 
A representation scheme for robotic soccer in the form of 
biological sequence has been presented. Two new 
algorithms to find repeating patterns and ideal game 
strategies similar to biological problems have been 
developed and tried on the sequences generated. A 
number of sequences has been generated from various 
games played and the algorithms proved effective in 
analysing various repeating patterns before a goal and 
finding faulty moves. Interesting sub-problems, such as 
stamina conservation of players have been identified and 
solutions have been proposed using the above 
representation scheme and associated algorithms – 
Moves that result in increased stamina expenditure have 
been identified and removed from player sequences. An 
agent learning Architecture has been proposed using the 
above representation scheme. Enhancements to the Rule 
discovery components and the Credit apportionment 
schemes have been shown to yield positive results and 
improvements in agent learning times. 
 
The current drawbacks of the presented scheme is the 
added overhead of human intervention and the resulting 
loss of automation. The immediate area for improvement 
would be to have some sort of database that include 
some predetermined knowledge about the desired actions 
and enabling automated lookup by the sequence analysis 
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algorithms to best select sub-sequences based on the data 
stored in the database. Further enhancements to the 
Genetic algorithm would also be possible with regards to 
selection criteria. 
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