
 117

PTree: A Tool to Draw Tree for Concept Relation Tree (CRT)

Mohd. Hasan Selamat2, Wan Malini Wan Isa2, Jamaliah Abdul Hamid1,
Hamidah Ibrahim2, Rusli Abdullah2 and Nurul Amelina Nasharuddin2

1Faculty of Educational Studies

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor
Tel: 03-89468177, Fax: 03-89468246

E-mail: aliah@putra.edu.my

2Faculty of Computer Science and Information Technology
Universiti Putra Malaysia, 43400 UPM Serdang, Selangor

Tel: 03-89466555, Fax: 03-89466576
E-mail: hasan@fsktm.upm.edu.my, wanmalini84@gmail.com, hamidah@fsktm.upm.edu.my,

 rusli@fsktm.upm.edu.my, nurulamelina@gmail.com

ABSTRACT

Our research project is currently to develop an Automatic
Meaning Extraction (AME) System which automatically
extracts concepts and their relationships across texts in all
domains of knowledge. Concept Relational Tree (CRT) is
one of the text analyzer applications used in the AME
System to automatically extract concepts and their
relationships in a document. To check on the correctness of
the extraction of concepts and their relationships, the PTree
is designed to reconstruct the text by reverse input. In this
paper we present the PTree tool to test the accuracy of the
automatic tagging and tree structure created by CRT from
texts. The PTree tool is implemented from Java Universal
Network/ Graph Framework (JUNG) libraries. This tool
provides a few functions to allow for flexibility in drawing
relational trees for concepts. Due to its flexibility and
dynamic features, PTree can be further extended for use in
the deconstruction of highly complex texts.

Keywords

Parse tree, Java Universal Network/Graph, interface

1.0 INTRODUCTION

The AME System is an ongoing development of a system
that extracts concepts and their relationships automatically
across domains of knowledge. AME when fully developed
is an automatic knowledge extraction system for the
building of knowledge ontologies and it will hopefully
allow the extraction and integration of ontologies of various
domains to enable comprehensive mapping of knowledge.
At the present stage of development, AME is able to
visualize concepts and their relationship from a collection
of documents and also enables the trace-back of particular
knowledge schema back to its original source in a
document.

In the process to extract concepts from text and their
relational mapping, the AME system uses a few text
analyzer applications which are Concept Relational Tree

(CRT), Connector Based Extraction (CBE), Concept
Relational Parser (CRP), and Social Competition Model
(SCM). These innovative applications are used to enable
automatic and more refined extraction of concepts and
concepts relationships to finally generate semantic schemas.
When AME deconstruct text, it performs tagging based on
concepts, relations and attributes. The CRT plays a crucial
role in arranging these concepts, relations and attributes so
that the semantic hierarchy is maintained even as texts get
more complex. CRT is an application which enhances the
architecture of Discourse Structure Tree (DST) by
integrating it with another tree, called the expression tree
(ET) (See Figure 1, 2 and 3). DST organizes semantics
hierarchically through markers. Since discourse markers are
not widely used in text, the applicability of DST is
compromised. ET on the other hand, improves coverage
and granularity by providing a new framework for semantic
organization based on connectors rather than discourse
markers.

The integration of ET and DST provides grater control to
the interpretation of semantics since semantics can be
attained at various levels of tree. Conventionally, lengthy
and complex texts cause the tree to increase in size
horizontally, thus endangering loss of the connectivity from
original agent. CRT maintains the relational connectivity by
vertical expression. CRT improves semantic organization
for most type of text. The more refined the semantic
organization is, the better the approach becomes to
semantic deconstruction. This in turn will enable better
schemes of meaning to be extracted and linked to one
another. By improving cohesion of schemes, the model
consequently will enhance the accuracy of the text
understanding.

 118

Figure 1: Expression Tree

Figure 2: Discourse Structure Tree

spoon

Amy

eats

with

salad

A
m

y
ea

ts
 sa

la
d

w
ith

 a
 sp

oo
n

3

+

*

4 2

4*
2+

3 operator

operand

relation

conceptexpression

sentence

spoon

Amy

eats

with

salad

A
m

y
ea

ts
 sa

la
d

w
ith

 a
 sp

oo
n

3

+

*

4 2

4*
2+

3 operator

operand

relation

conceptexpression

sentence

Figure 3: Expression Tree and CRT

Experimentation is required to show the accuracy of CRT
in performing automatic sentences deconstruction. PTree
enables those concepts and relations as identified by the
CRT to be re-inserted by the user at various levels of parent
and child nodes, and PTree then reconstructs the entire
sentence. We can then compare the sentence reconstructed
by PTree based on the user insertions to the sentence which
had been automatically deconstructed by CRT. Figure 4
show the flow of sentence deconstruction by CRT and
sentence reconstruction by PTree tool. This tool is
developed using JAVA language and other software library
is called Java Universal Network/Graph Framework
(JUNG).

Figure 4: Sentence deconstruction and reconstruction

2.0 RELATED WORK

A tree is composed of a collection of nodes, where each
node has some associated data and a set of children. A
node’s children are those nodes that appear immediately
beneath the node itself. A node’s parent is the node
immediately above it. A node which has no parent is called
root node (Mitchell, 2008). There are several trees
commonly used in computer science and natural language
processing. Binary tree is one used in computer science
field. A binary tree is a data structure tree in which each
node has at most two children. Each child of a node is
designated to its left or right. Nodes that have no children
are referred to as leaf nodes while nodes that have one or
two children are referred to as internal nodes. Examp les of
binary tree are complete binary tree, full binary tree, binary
search tree, binary heap, balanced binary tree and many
more (Black, 2007). In binary tree, the nodes only can
contain numbers as the content or label of the nodes.

Parse tree on the other hand is commonly generated for
sentences in natural languages, as well as during processing
of computer languages, such as programming languages. A
parse tree is a tree that arranges the words in the sentence
according to their part-of-speech tag and production rules.
The production rules determine the hierarchical manner of
which tags are related to one another by specifying the
formula of tag decomposition. Consider an example of a
parse tree (See Figure 5). The leaves of the tree consist of
words fro m the sentence (Ungku Chulan, 2007).

Draw tree using tool

User input data to the tree

Sentence reconstructs
using tool

CRT PTree tool

Draw tree

Sentence deconstruction

Post tag into concept,
relation and attribute

 119

Figure 5: Parse Tree.

From the concept of binary and parse tree, we develop a
tool which is combination from the two concepts. PTree is a
tool like binary tree in that one parent has two nodes and
the children are in left and right positions. Because of the
limitations of labeling the content in binary tree, PTree uses
the concept of parse tree to enable the use of words, not
numbers, to label the content in this tool. PTree tool were
designed synonymously for CRT where the node in the tree
contain concept (C) and relation (R) node. The basic C-R-C
tree structure in CRT is itself innovative, doing away with
the need to tag determiners and conjunctions, adjectives and
adverbs. The classification of the new part of speech
tagging in the AME system is described in another paper.

JUNG is a software library that provides a common and
extendible language for the modeling, analysis and
visualization of data to enable it to be represented as a
graph or network (O’Madadhain, Fisher, Smyth, White &
Boey, 2003). JUNG library can be implemented in any
Java-based applications and makes use of the extensive
capabilities of the Java API. One of the functionalities in
JUNG is that it is suitable for creating trees, that is, it
provides a mechanism for annotating metadata to the
graphs, entities and relations. This facilitates the creation of
analytic tools for complex data sets to enable one to
examine the relations between entities as well as the
metadata attached to each entity and relation.

3.0 PTree TOOL

3.1 Structure of PTree tool

PTree is a tool to reconstruct sentences from a tree. The tree
uses the same concept as a binary tree whereby one parent
has two children. This tree is made of a node, a
combination of nodes or combination of trees. The node of
the tree is made of either concept or relation. The internal
nodes are all relations. They can be seen as the branches of
the tree and the external nodes are all concepts. They are
the leaves of the tree. Relation nodes describe the
connection of nodes in the tree or between two trees under
it. PTree tool is different from normal parse tree whereby it
allows the node in the tree to be either concepts or relations,
and not the usual part of speech tags.

Figure 6: Concept Relation Tree Structure

3.2 Functions in PTree

PTree tool contains menu bar, tool bar, tree viewer and text
area. When the user runs this tool, one node will appear at
the center of the tree viewer which is called the root node.
From a single root node, user can extend the node to
become a tree. To build a tree, user right clicks on the node
and a pop up menu will display. The pop up menu consists
of several functions that user can use to interactively draw
the tree.

First function is “Add node (L&R)” where this function is
to add left and right nodes to an existing node. Like the
binary tree, the parent node only can have two children. If
the parent node already has two children, the user cannot
perform this function to add left or right nodes again and an
error message will appear on the screen. However, the
PTree now allows for either the left child node or the right
child node to be extended further, but not both. User can do
this by choosing “Add node (L)” or “Add node (R)”.
When the next level of child nodes have been extended, the
left or right of the previous level now changes its type from
concept to relation.

Figure 7: Pop up menu function.

For example in Figure 8 (left) node 1 is a concept but when
user adds the child node to node 1, it changes its type from

S

VP

the fish

VP

PP

IN NP

by Amy

VBD

was VBN

fed

NP

DT NN R

C C

R

C C

R

R C Concept Relation

 120

concept to relation. See Figure 8 (right). This allow for new
levels of concepts to be introduced and related to one
another. In this way, the parent node maintains the initial
pivotal relation that encapsulates all other relationships
spawned by n-levels of nodes. It is this ability of PTree to
maintain the pivotal relationship at the parent node that
enables the tree to hold on the essential meaning of a
sentence in spite of any number of subsidiary concepts and
their relationships are added on.

Figure 8: Type node change from concept to relation

Thus, a sentence “Amy goes to the school by bus which is
driven by Ali on Mondays of every month” will never lose
its essential core of meaning that “Amy goes to the school
by bus” which happens to be modified by “bus is driven by
Ali”, “Ali drives on Mondays” and “Mondays of every
month” in the layer of child nodes. The parent node is
always the connector that links the concepts in the left or
right children nodes.

Another function on pop up menu is “Delete node”. When
the user performs this function on a child node, the node
will be deleted. If the user performs this function on a
parent node, all the child nodes belong to the parent will be
deleted including the parent node.

This PTree tool enables the user to input (insert) the content
to the node. User can perform this action by double clicking
at the node and a pop up input dialog will be displayed.
User enters the content for the node and it is then displayed
as a label below the node. This makes it easy for the user to
insert and view the content of the node. If the user wants to
change the content of the node, the user double clicks on
the node and enters the new content in input dialog box.
The content of the node are not limited only to numbers or
words. This input function gives the flexibility to change
the status of the node to either concept or relation. In
conventional binary trees, the rigid notation by numbers
preserves the order of the tree hierarchy, and difficulty
arises when sentences become more complex, with many
subsidiary concepts.

The tool bar in this PTree has three formatting buttons. First
button is “Reset” button. This button is to reset the node to
the earlier position, clear all the nodes and their contents
and draw a new root node. The next button is “In-Order
Traversal” button. When user clicks this button, the tool
will traverse the tree from left to right node to compute or
read all the nodes of the left subtree, the root and lastly the

right subtree. As a result of the traversal, the reconstructed
sentence will be displayed in the text area. The
reconstructed sentence provides semantic checks to whether
CRT has correctly extracted concepts and their relations. If
CRT extraction and relation parsing was correct, then the
sentence parsed together (sentence reconstruction) by PTree
should be the same sentence that was deconstructed by
AME. Our experiments with the PTree show at this point
that the CRT is capable of 67% accuracy.

Figure 9: PTree tool

This tool also has a menu bar which contains “Save as
Image”, “Print” and “Exit” function. Save as image
function allows user to save the tree as image in JPEG file
format. Print function will connect this tool to the online
printer and allows the user to print the tree directly from
this tool. User can click on exit function to exit from this
tool.
4.0 CONCLUSIONS AND FUTURE WORK

This PTree tool was developed to draw a tree to test the
accuracy of CRT in the AME system. The experiment is
important to check whether CRT has correctly extracted the
concepts and relations from the sentences in a document.
By comparing the reconstructed sentence produced from
the PTree to the original sentence parsed automatically by
CRT, the accuracy of the CRT can be determined.

Currently PTree only have one type of traversal which is in-
order traversal. The tree reads the content of the node from
left subtree, root and the right subtree. For next
development of PTree tool, we intend to add other types of
traversal such as post-order traversal and pre-order
traversal. Post-order traversal means traversing from left
subtree, right subtree and finally to the root node. On the
other hand pre-order traversal traverse from root node, left
subtree and right subtree. These traversals become
important in next development to make sure this tool can be
use in multiple types of natural language texts.

Besides that, the PTree will be developed to allow for
functions such as to add new roots for children node, or to

1

1

 121

cut and paste subtrees at other subtree. This function is to
help users to easily alter the tree when the user makes a
mistake during the creation of the tree. Using this function,
user does not have to delete all nodes to begin all over
again when the tree encounters a mistake. “Add new root”
function will also be added to enable users to add node at
the highest hierarchy of the tree. PTree is hoped to be a
useful tool for natural language processing.

REFERENCES

Barthelemy, F.,Boullier, P.,Deschamp, P.,Kaouane, L.,
Khajour, A., & Clergerie, E.V. (2001). Tool and
resources for Tree Adjoining Grammars. In
Proceedings of the ACL 2001 Workshop on Human
Language Technology and Knowledge Management,
Volume 15.

Black, P. E. (2007). Binary tree. Retrieved January 7, 2008,
from
http://www.nist.gov/dads/HTML/binarytree.html

Cohen, R. F., Battista, G. D., Tamassia, R., Tollis, I. G. &
Bertolazzi, P. (1992). A framework for Dynamic
Graph Drawing. In Annual Symposium on
Computational Geometry, Proceedings of the eighth
annual symposium on Computational geometry.

Gross, J., & Yellen, J. (1999). Graph Theory and Its
Applications. Boca Raton, Florida: CRC Press.

Hanrahan, P. (2001). To Draw a Tree. In Proceedings of the
IEEE Symposium on Information Visualization
(INFOVIS’01).

Kennedy , J.. Parse Trees (n.d). Retrieved January 7, 2008
from
http://homepage.smc.edu/kennedy_john/PARSETRE
ES.PDF.

Mitchell, S. (2008). Binary Trees and BSTs. Retrieved
January 4, 2008, from
http://msdn2.microsoft.com/en-
us/library/ms379572(VS.80).aspx .

Moen, S. (1990). Drawing Dynamic Trees. In IEEE
Software, Volume 7, Issue 4, Page 21-28.

O’Madadhain, J., Fisher, D., Smyth, P., White, S., & Boey,
YB. (n.d). Analysis and visualization of network data
using JUNG. In Journal of Statistical Software.
Retrieved January 2, 2008, from
http://jung.sourceforge.net/doc/JUNG_journal.pdf.

Power, J. F. & Molly B. A. (2002). Program annotation in
XML: a parse-tree based approach. In Proceeding of
the Ninth Working Conference on Reverse
Engineering (WCRE’02).

Ungku Chulan, U.A. (2007). Connector-based Extraction
with Concept Relational Parser for Extracting
Semantic Relation from Text. PhD thesis, Universiti
Putra Malaysia.

Zanden, B. V., & Beeler, M. (n.d). A Tool for Sketching
and Manipulating Binary Heaps. Retrieved January
3, 2008 from
http://www.cs.utk.edu/~bvz/HeapAnimation.pdf

