
Proceedings of the 6th International Conference on Computing and Informatics, ICOCI 2017

25-27April, 2017 Kuala Lumpur. Universiti Utara Malaysia (http://www.uum.edu.my)
Paper No.

037

663

VALIDATION OF UC2VDM++ ARCHITECTURE

Swee Yin Wong1, Edwin Mit2, and Jonathan Sidi3
1Universiti Malaysia Sarawak, Malaysia, cyinwsy@gmail.com

2Universiti Malaysia Sarawak, Malaysia, edwin@fit.unimas.my
3 Universiti Malaysia Sarawak, Malaysia, jonathan@fit.unimas.my

ABSTRACT. Bridging the gaps between use case and formal specification

can be very helpful in obtaining a reliable and rigor software model through

economic and easy object modeling. However, bridging the syntax and se-

mantic formalism gaps between natural language use case scenario and

VDM++ formal specification is a huge challenge. This is because natural

language requirement has been well recognized that it is inherently ambigu-

ous, incomplete and inconsistent. Its ambiguity will result in an incorrect

and inaccurate analysis and design model. In order to obtain economic and

rigor architecture of software model, this paper would introduce and discuss

the motivations and challenges in the implementation of mapping rules and

restriction rules embedded in the Uc2VDM++, and discuss the validation

process of Uc2VDM++ in producing a correct software model.

Keywords: use case, formal model, validation, architecture

INTRODUCTION

Use case diagram of Unified Modeling Language (UML) is an essential for understanding

how to bridge the gap between user and software developer and a high level model for the

software systems (Sengupta & Bhattacharya, 2006). Yet, most use case specifications are

described in natural language (i.e. English) which is inherently ambiguous, incomplete, and

imprecise (Ghosh, Elenius, Li & Lincoln, 2016). Thus, it will cause some misunderstanding

among software developers, domain experts and end users of a system due to its ambiguity

and flexibility. As a consequence, it will result in incorrect and inaccurate analysis and design

model.

Use case is used in the early stage of software development; formalism of use cases can re-

duce a lot of confusion and misinterpretation among end users and software developers and

hence can be very favorable to the software quality (Shen & Liu, 2003). Formal method is the

most favorable technique in reducing errors particularly at the earlier stages of software devel-

opment (Bakri, Harun, Alzoubi, & Ibrahim, 2013). In addition, formal method has been quite

successfully used in requirements representation for discovery inconsistencies, incompleteness

and ambiguities (Sharma & Biswas, 2015; Mondal, Das, & Banerjee, 2014).

This paper presents our continuous research in Formal-Object Tool (FOTool), (Mit, Ng, &

Cheah, 2014). This paper will discuss the validation process of Uc2VDM++ in producing a

correct software model, the motivations and challenges in the implementing the Uc2VDM++.

This paper also discusses the development of the prototype which is embedded with the pro-

posed formal use case template and its restriction and mapping rules defined in previous work

(Wong et al., 2016). Through this use case formalization, it is believed that a precise, con-

How to cite this paper:

Swee Yin Wong, Edwin Mit, & Jonathan Sidi. (2017). Validation of UC2VDM++ architecture in Zulikha, J. & N. H.

Zakaria (Eds.), Proceedings of the 6th International Conference on Computing & Informatics (pp 663-668). Sintok:

School of Computing.

http://www.uum.edu.my/

Proceedings of the 6th International Conference on Computing and Informatics, ICOCI 2017

25-27April, 2017 Kuala Lumpur. Universiti Utara Malaysia (http://www.uum.edu.my)
Paper No.

037

664

sistent, complete, and unambiguous software specification can be produced. Hence, it can indi-

rectly ameliorate the software reliability, quality, understandability and design time, at the

same time prevent software failure and lower redesign costs.

The following sections of this paper presents on the review of related works, Uc2VDM++

environment , the implementation and validation of the Uc2VDM++ prototype on a small case

study, and the motivations and challenges faced in the implementation of mapping and re-

striction rules. The last section is to conclude this paper.

RELATED WORKS

A number of research works have been done in the direction of formalization of UML

diagrams into different formal models such as Petri Net, CASL, Z notation, and so on.

Nevertheless, only few researches formalize use cases into VDM++ formal specification.

Sengupta and Bhattacharya (2008) suggested a extendable and structured format for use

case and formalized them into Z notation schema. The Z notation schema was validated by

using a Z notation type checker, ZTC. Yet, Z cannot be executed as it has no compiler (Jia,

2002). Due to this limitation, automated verification is not probable only if Z is mapped into

other executable models (Chanda, Kanjilal, Sengupta, & Bhattacharya, 2009). Chanda et al.

(2009) proposed a context free grammar for defining UML class, use case, and activity

diagrams formally in order to develop a complier and formally verify the design of object-

oriented systems (Chanda et al., 2009).

A systematic approach to translate functional requirements describing in use case diagram

into Maude formal specification was suggested by Mokhati and Badri (2009) in order to

bridge the gaps between informal and formal specification. Maude is a programming

language and executable formal specification using rewriting logic (Clavel et al., 2002). The

formal framework for analyzing and verifying functional requirements of system through

Maude descriptions by using Maude model checker had been proposed (Mokhati & Badri,

2009).

Zhao and Duan (2009) proposed to derive Timed and Controlled Petri Nets (TCPN) from

use case description. The authors adopted Petri Nets because of its mathematical simplicity,

existence analysis tool, well developed quantitative and qualitative analysis techniques, etc,

which will help on the validation of the model.

Furthermore, in a continuous research (Lee, Bordbar, & Bajwa, 2009; Bajwa, Bordbar, &

Lee, 2010; Bajwa, Lee, & Bordbar, 2011, 2012a), the authors proposed the automated

transformation of UML model describing in English representation into Object Constraint

Language (OCL). But, OCL is the least used member in UML family of languages, mainly

because of its uncommon semantic and syntax (Bajwa et al., 2010). The authors transformed

natural language into OCL statement by adopting Semantic Business Vocabulary and Rules

(SBVR) as intermediary measure for dealing with the ambiguities in semantic and

inconsistencies in syntax of English expression. (Bajwa et al., 2012b).

In another continuous research, Yue, Briand, and Labiche (2009, 2010, 2013, 2015)

derived UML analysis models from use cases by recommending Restricted Use Case

Modeling (RUCM) for reducing incompleteness and imprecision of use case specification.

The proposed RUCM is made up of one set of restriction rules and one use case template for

analysis facilitaion in automation and ambiguities reduction (Yue et al., 2010). The authors

applied Stanford parser in their developed tool, called aToucan (Yue et al., 2015). However,

the parser has some limitations and is unable to generate accurate results frequently (Yue et

al., 2010, 2013, 2015).

http://www.uum.edu.my/

Proceedings of the 6th International Conference on Computing and Informatics, ICOCI 2017

25-27April, 2017 Kuala Lumpur. Universiti Utara Malaysia (http://www.uum.edu.my)
Paper No.

037

665

Besides that, Mondal et al. (2014) suggested to formalize UML use case diagram into an

expressive specification language that is Common Algebraic Specification Language (CASL).

The language was designed to substitute existing algebraic specification languages

(Astesiano, 2002). The authors highlighted that CASL approach was used by them as both Z

and B notation are unable to give algebraic prototyping and architectural specification. A case

study was also carried out in their work to show how use case model was defined formally

into CASL according to their proposed mapping. Their on going research is to validate the

case study using CASE tool (Mondal et al., 2014).

In addition, Mit, Ng, and Cheah (2014) carried out a study focusing on the translation of

UML activity and class diagrams into VDM++ formal specification. This was encouraged by

the incompleteness of mapping between VDM++ formal specification and activity diagram

due to their semantic differences. The authors defined a set of mapping rules for integrating

the object models and the formal specification according to their semantics similarity.

Formal-Object tool (FOTool) was developed for capturing and transforming UML software

model specifications into VDM++ formal specifications. The VDM++ formal specifications

can be later verified formally by VDM++ ToolBox (Mit et al., 2014).

Numberous researches have been carried out to transform UML into formal model in order

to validate the UML models. However, there are a number of limitations in order to produce

accurate result. This work adopts some validation process from these literature studies by

developing a prototype to prove the Uc2VDM++ archiecture and validates the output

generated by the prototype using VDM++ ToolBox.

UC2VDM++ IMPLEMENTATION ENVIRONMENT

The prototype is developed by using JAVA language. Eclipse is selected and used as the

platform for the development of the prototype due to its good error checking feature. JDK

version 1.8.0_66, the latest version of JDK so far, is used for compiling, debugging and run-

ning the program in Eclipse. The latest Stanford parser version 3.6.0 is deployed to assign

POS tags and to extract the required information from the proposed textual use case template.

XML file is used to temporarily store the UML use case details before transforming them into

VDM++ formal specification (Larsen & Fitzgerald, 2007; Overture, n.d.). JDOM version

2.0.5 is also adopted to generate XML structure between these two models. The use case tem-

plate is designed as the interface of the prototype in form-fill style, used to capture all the

required UML use case details. Meanwhile, a tool tip is created by using Balloon tip version

1.2.4.1 for each field of the use case template interface in order to provide users instructions

to fill in the use case template.

Process Flow of the Prototype

Figure 1 shows the simple process flow of the prototype. The input of the prototype is a

use case in form of template. Since natural language is too flexible and existing natural lan-

guage parsers have the limitation of assigning 100% correct POS tags for each input, so the

prototype involved a very strict validation process for checking each input against the re-

striction rules. For instance, each simple sentence must follow either Subject-Verb-Direct

Object (SVO) or Subject-Verb-Direct Object-Indirect Object (SVOO) grammar form (e.g.:

SVO - “Member places book.”). We are unable to describe all scenarios of the restriction

rules here due to the limitation of the space. The valid grammar input is then parsed to Stan-

ford parser. The parser is deployed to perform the POS tagging and assign the suitable POS

tags for the inputs. The tagged inputs are then extracted and temporary stored as Extensible

Markup Language (XML) structure in an XML file. The XML file is generated automatically

if the file does not exist. Otherwise, the XML file will be overridden each time for a new use

case. Once the XML file is ready, the prototype will directly continue to generate a VDM++

http://www.uum.edu.my/

Proceedings of the 6th International Conference on Computing and Informatics, ICOCI 2017

25-27April, 2017 Kuala Lumpur. Universiti Utara Malaysia (http://www.uum.edu.my)
Paper No.

037

666

formal specification and store with file extension “.vpp” (e.g.: VDM Output.vpp) based on the

proposed set of mapping rules. The output of the prototype is a VDM++ formal specification.

Figure 1. The Simple Process Flow of the Prototype

VALIDATION OF TEMPLATE AND RULES

The proposed use case template had been refined, which consists of Use Case Name, Pri-

mary Actor(s), Secondary Actor(s), Generalization(s), Dependency(s), Main Success Scenar-

io, Extension (Alternative), Exception (Error Handling) and Pre/Postcondition(s). Each field

of the use case template of the prototype has been tested with both valid and invalid data,

complete and also incomplete data. All the features of the prototype are working properly. A

VDM++ formal specification is also successfully generated by the prototype and validated by

the latest version of VDM++ support tool (i.e.: VDM++ ToolBox version 9.0.6) for syntax

and type checking. There are no syntax and type checking errors found in the generated out-

put. Hence, the prototype can be said that it is able to generate a correct VDM++ formal spec-

ification.

Case Study

A small case study on library management system was carried out to depict the process as

shown in Figure 2.

Figure 2. The Partial Use Case Diagram of the Book Management Sub System

A use case “return book” is chosen to be further described as an example here since it in-

volves all the relationships such as association, generalization, extend and include relationship.

The use case is mainly described on how a member returns book. For instance, the noun of

the use case name “return book” and the generalization use case “return reading material” are

defined in VDM++ as “class Book is subclass of ReadingMaterial”. While the whole use case

name “return book” is defined as the main operation in VDM++ as “public ReturnBook() ==”.

Furthermore, steps of main success scenario such as “Member places book.” is defined as a

sub operation “placesBook();” within the block of main operation in VDM++. The generated

VDM++ formal specification for that use case “return book” has been imported into VDM++

ToolBox for validation. The output generated by the prototype is correct since both syntax

and type checking are correct.

Input

validation
Stanford

Parser
XML

File
Input

VDM++ Formal

Specification

http://www.uum.edu.my/

Proceedings of the 6th International Conference on Computing and Informatics, ICOCI 2017

25-27April, 2017 Kuala Lumpur. Universiti Utara Malaysia (http://www.uum.edu.my)
Paper No.

037

667

MOTIVATION AND CHALLENGES OF UC2VDM++ RULES

Uc2VDM++ architecture (Wong et al., 2016) is developed to reduce the formalism gaps

by formalizing use case into VDM++ formal specification. Restriction rules are created to

guide users to fill in correct inputs on the use case template in order to produce a correct out-

put. In addition, mapping rules are produced to reduce the gaps by mapping use case into

VDM++ formal specification based on semantics similarity.

However, there are some challenges faced in deriving the rules, such as the flexibility of

natural language which can be written in various grammar forms. In order to deal with this

problem and ensure correct mapping, only simple SVO or SVOO grammar form (e.g.: SVO -

“Member places book.”) is allowed. At the same time, the limitation of existing natural lan-

guage parser has made the prototype to involve a very strict validation process based on the

restriction rules. Wrong input or incorrect grammar form will alert an error pop up message.

Although the restriction rules can contribute to correct output, the rules may not allow users

to have their own way to write natural language use case scenario. Another challenge is the

absence of some use case properties that can be mapped to the VDM++ formal specification.

Therefore, augmentation and manipulation of the model properties have been carried out be-

tween use case and VDM++ formal specification.

CONCLUSION

In this work, the validation rules (i.e., the restriction and mapping rules) have been em-

bedded in a prototype to prove the correctness of Uc2VDM++ architecture. The prototype

consists of the proposed use case template, restriction and mapping rules. The prototype is

also applied to a small case study and its output has been validated by using VDM++

ToolBox. The result shows that use case can be formalized into VDM++ formal specification

successfully. By having valid VDM++ formal specification, it can contribute to produce a

precise, complete, unambiguous and consistent software specification and lead to a correct

software model.

ACKNOWLEDGEMENTS

The authors would like to thank Universiti Malaysia Sarawak for providing the funding to

publish and present this paper. This work is supported by Fundamental Research Grant

Scheme: FRGS/02/2014/ICT07/UNIMAS/02/1.

REFERENCES

Astesiano, E., Bidoit, M., Kirchner, H., Krieg-Bruckner, B., Mosses, P. D., Sannella, D., & Tarlecki, A. (2002).

CASL: The Common Algebraic Specification Language. Theoretical Computer Science, 286(2), 153-196.

doi: 10.1016/S0304-3975(01)00368-1.

Bajwa, I. S., Bordbar, B., & Lee, M. G. (2010). OCL Constraints Generation from Natural Language

Specification. 14th IEEE International Enterprise Distributed Object Computing Conference (EDOC) (pp.

204-213). doi: 10.1109/EDOC.2010.33.

Bajwa, I. S., Lee, M. G., & Bordbar, B. (2011). SBVR Business Rules Generation from Natural Language

Specification. AAAI Spring Symposium: AI for Business Agility, (pp. 2-8).

Bajwa, I. S., Lee, M. G., & Bordbar, B. (2012a). Resolving Syntactic Ambiguities in Natural Language

Specification of Constraint. In A. Gelbukh (Ed.), Computational Linguistics and Intelligent Text

Processing (pp. 178-187). New York: Springer-Verlag Berlin Heidelber.

Bajwa, I. S., Lee, G., Bordbar, B. (2012b). Translating Natural Language Constraints to OCL. Journal of King

Saud University – Computer Information and Sciences, 24(2), 117-128. doi:10.1016/j.jksuci.2011.12.003.

Bakri, S. H., Harun, H., Alzoubi, A., & Ibrahim, R. (2013). The Formal Specification For The Inventory System

Using Z Language. In Z. Jamaludin, N. ChePa, & M. S. A. Bakar (Eds.), Proceedings of the 4th

International Conference on Computing and Informatics, ICOCI (pp. 419-425). Sintok: Universiti Utara

Malaysia.

http://www.uum.edu.my/

Proceedings of the 6th International Conference on Computing and Informatics, ICOCI 2017

25-27April, 2017 Kuala Lumpur. Universiti Utara Malaysia (http://www.uum.edu.my)
Paper No.

037

668

Chanda, J., Kanjilal, A., Sengupta, S., & Bhattacharya, S. (2009). Tracibility of Requirements and Consistency

Verification of UML UseCase, Activity and Class Diagram: A Formal Approcah. Proceeding of

International Conference on Methods and Models in Computer Science (pp. 1-4). doi:

10.1109/ICM2CS.2009.5397941.

Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., & Quesada, J. F. (2002). Maude:

specification and programming in rewritting logic. Theoretical Computer Science, 285(2), 187-243.

Ghosh, S., Elenius, D., Li, W., & Lincoln, P. (2016). ARSENAL:Automatic Requirements Specifiction Extraction

from Natural Language. In S. Rayadurgam & O. Tkachuk (Eds.), NASA Formal Methods Symposium (pp.

41-46). Switzerland: Springer International Publishing Switzerland.

Jia, X. (2002). ZTC: A Type Checker for Z Notation User’s Guide. Retrieve from http://Isi.ugr.es

Larsen, P. G., & Fitzgerald, J. (2007). Recent Industrial Applications of VDM in Japan. In P. Boca, J. Bowen, & P.

G. Larsen (Eds.), FACS 2007 Christmas Workshop: Formal Method (pp. 1-6). London, UK: The British

Computer Society.

Lee, M. G., Bordbar, B., & Bajwa, I. S. (2009). NL2OCL Project. Retrieve from

http://www.cs.bham.ac.uk/~bxb/NL2OCLviaSBVR/NL2OCLviaSBVR.html

Mit, E., Ng, B. D., & Cheah, W. S. (2014). FOTool: Modelling Indigenous Community Cultures In Sarawak.

Journal of Software Engineering and Application, 7(8), 720-729. doi: 10.4236/jsea.2014.78067.

Mokhati, F., & Badri, M. (2009). Generating Maude Specifications From UML Use Case Diagrams. Journal of

Object Technology, 8(2), 119-136.

Mondal, B., Das, B., & Banerjee, P. (2014). Formal Specification of UML Use Case Diagram – A CASL Based

Approach. International Journal of Computer Science and Information Technologies, 5(9), 2113-2717.

Overture. (n.d.). The Vienna Development Method. Retrieved Jan 25, 2016 from http://overturetool.org/

Sengupta, S., & Bhattacharya, S. (2006). Formalization of UML Use Case Diagram – A Z Notation Based

Approach. ‘06International Conference on Computing & Informatics (pp. 1-6). doi:

10.1109/ICOCI.2006.5276507.

Sengupta, S., & Bhattacharya, S. (2008). Formalization of Functional Requirement in Software Development

Process. Foundations of Computing and Decision Science, 33(1), 83-115.

Sharma, R., & Biswas, K. K. (2015). Generating Logical Representations for Natural Language Requirements

Using Syntactic Dependencies and Norm Analysis Patterns. In C. Biemann, S. Handschuh, A. Freitas, F.

Meziane, & E. Metais (Eds.), Natural Language processing and Infromation Systems: 20th International

Conference on Applications of Natural Language to Information Systems (pp. 432-436). Switzerland:

Springer International Publishing.

Shen, W., & Liu, S. (2003). Formalization, Testing and Execution of a Use Case Diagram. ln J. S. Dong & J.

Woodcock (Eds.), Formal Methods and Software Engineering (pp. 68-85). New York: Springer-Verlag

Berlin Heidelberg.

Wong, S. Y., Mit, E., & Sidi, J. (2016, August). Integration of Use case Formal Template Using Mapping Rules.

Paper presented at the CAMP’16 3rd International Conference on Information Retrieval and Management,

Melaka, Malaysia.

Zhao, J., & Duan, Z. (2009). Verification of Use Case with Petri Nets in Requirement Analysis. In O. Gervasi, D.

Taniar, B. Murgante, A. Lagana, Y. Mun, & M. L. Gavrilova (Eds.), Computational Science and its

Application (pp. 29-42). New York: Springer-Verlag Berlin Heidelber.

Yue, T., Briand, L. C., & Labiche, Y. (2009). A Use Case Modeling Approach to Facilitate the Transition Towards

Analysis Models: Concepts and Empirical Evaluation. In A. Schurr & B. Selic (Eds.), Model Driven

Engineering Languages and Systems: 12th International Conference, MODELS (pp. 484-498). Berlin,

Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/978-3-642-04425-0_37.

Yue, T., Briand, L. C., & Labiche, Y. (2010). An Automated Approach toTransform Use Cases into Activity

Diagrams. In T. Kuhne, B. Selic, M. Gervais, & F. Terrier (Eds.), Modelling Foundations and

Applications: 6th European Conference, ECMFA (pp. 337-353). Berlin, Heidelberg: Springer Berlin

Heidelberg. doi: 10.1007/978-3-642-13595-8_26.

Yue, T., Briand, L. C., & Labiche, Y. (2013). Facilitating the Transition from Use Case Models to Analysis

Models: Approach and Experiments. ACM Transactions on Software Engineering and Methodology

(TOSEM), 22(1), 5:1-38. doi: 10.1145/2430536.2430539.

Yue, T., Briand, L. C., & Labiche, Y. (2015). aToucan: An Automated Framework to Derive UML Analysis

Models from Use Case Models. ACM Transactions on Software Engineering and Methodology, 24(3),

13:1-52. doi: 10.1145/2699697.

http://www.uum.edu.my/

