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ABSTRACT. Flood is one of the natural disasters caused by complex fac-

tors such as natural, breeding and environmental. The variability of such 

factors on multiple heterogeneous spatial scales may cause difficulties in 

finding correlation or association between regions. The interaction between 

these factors has resulted in provision of either diverse or repeated infor-

mation which can be detrimental to prediction accuracy.  The complex and 

diverse available database has triggered this study to incorporate multi-

source heterogeneous data source in finding association between regions. 

Bayesian Network based method has been used to quantify dependency pat-

terns in spatial data. However, a group of variables may be relevant for a 

particular region but may not be relevant to other region. To overcome the 

weakness of Bayesian network in handling continuous variable, this study 

has proposed data discretization technique to produce spatial correlation 

model. The effect of the proposed fuzzy discretization on the association 

performance is investigated. The comparison between different data dis-

cretization techniques proved that the proposed fuzzy discretization method 

gives better result with high precision, good F-measure, and a better receiver 

operating characteristic area compared with other methods. The results of 

correlation between the spatial patterns gives detailed information that may 

help the government, planners, decision makers, and researchers to perform 

actions that help to prevent and mitigate flood events in the future. 
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INTRODUCTION 

In recent achievements, the use of Bayesian Network (BN) methods in the domain of dis-

aster management has proven its efficiency in developing susceptibility models and risk mod-

els. Several studies can be seen, including works by various researchers (Li et al., 2010; Liang 

et al., 2012; Peng & Zhang, 2012a; 2012b; Viglione et al., 2013; Vogel et al., 2013) that pre-

sent studies to develop flood models using BN. Although BN has to be highlighted as a pow-

erful method to find dependencies, the challenge begins when dealing with the continuous 

variables (Nielsen, 2009; Uusitalo, 2007; Zwirglmaier et al., 2013). Dougherty, Kohavi, and 

Sahami (1995), Friedman and Goldsmith (1996), Aguilera, Fernández, Fernández, Rumí, and 

Salmerón (2011), and Vogel (2014) suggested to use discretization to overcome this problem.  

Therefore, this study proposes the fuzzy discretization method to handle continuous data. 

Data discretization is a process of converting continuous variables into partition boundaries 
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with selected cut points. In spatial data mining uncertainty in the association, discretization 

has become one of the preprocessing techniques that used to transform a continuous variable 

into a discrete one (Bakar, Othman, & Shuib, 2009; García, Luengo, & Herrera, 2015).  

The advantage of discretization on continuous data can lead to data reduction and the sim-

plification of data. Subsequently, this process will make the learning faster and produce short-

er and compact results. Some reviews of the discretization technique can be found in the liter-

ature (e.g., Liu, Hussain, Tan, & Dash, 2002; Yang, Webb, & Wu, 2010). Second section 

discusses the previous studies of research related to data discretization. Next, the paper de-

scribes the proposed data discretization. The performances of different discretization methods 

on correlation models are then discussed. Concluding remarks are provided in the last section. 

DISCRETIZATION OF CONTINUOUS FLOOD INDUCING FACTORS 

The main goal of discretization is to transform continuous attributes into discrete attrib-

utes. In this section, the discretization will be discussed as a preliminary condition for data 

preprocessing in order to be fed into the Bayesian Network model. The presentations are fo-

cused to the supervised discretization methods. Supervised discretization methods utilize the 

class information in setting partition boundaries. Unsupervised discretization methods do not 

utilize instance labels for the selection of cut points. These methods work reasonably well 

when used in spatial data. Unsupervised methods such as equal interval (EI), natural breaks 

(NB), quantile (QU), and standard deviation (SD) are among the most common discretization 

methods implemented in the field of geovisualization and spatial data mapping (Fischer & 

Wang, 2011; Stewart & Kennelly, 2010).  

Supervised methods have been presented widely in the research fields of spatial data min-

ing, risk studies, and prediction. Berger (2004) performs the minimum description length 

principle (MDLP) to discretize continuous environmental data using rough set rule for agri-

cultural soils and assess crop suitability. Bai, Ge, Wang, and Lan Liao (2010) also used 

MDLP to discretize continuous risk factors and mined underlying rules between neural tube 

defects (NTD). Lustgarten, Visweswaran, Gopalakrishnan, and Cooper (2011) provide an 

efficient supervised Bayesian discretization method to give better results for classification 

from a high-dimensional biomedical dataset. Ge, Cao, and Duan (2011) compared the impacts 

of three supervised discretization methods which are used on remote sensing classification. 

The authors presented supervised methods for spatial data discretization. 

Jenks and Caspall (1971) proposed the natural breaks method to determine the values of 

cut points. The author presented the choropleth map classes using unsupervised method that 

improved inputs of choropleth map information system. Moreover, Dawod, Mirza, and Al-

Ghamdi (2012) also used natural breaks method to identify the break points of total flood 

volume values. Although the natural breaks method can handle volumes of spatial data, this 

method required predefined numbers of intervals before the discretization process. As ex-

plained by Marcot, Steventon, Sutherland, and McCann (2006), the maximum number of 

intervals or the discretization should be limited in five states to improve the precision and the 

network structure.  

In this study, the membership function (MF) graph in fuzzy logic has been used to discre-

tize the continuous variables. Zadeh (2008) presented the fuzzy logic concept as a data pre-

processing technique that provided more logical and scientific explanation to describe the 

attributes of the object. The fuzzy set intervals for each flood factor are represented as linguis-

tic variables to a maximum of five intervals, which are very low, low, moderate, high, and 

very high. Fuzzy logic is based on the theory of fuzzy sets that measure the ambiguity and 

believe all things admit of degrees (Kanagavalli & Raja, 2013; Negnevitsky, 2011). Hiwarkar 
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and Iyer (2013) claimed that fuzzy logic presents the easier technique to clearly define the 

conclusion when it comes upon imprecise vague, ambiguous, noisy or missing input infor-

mation.  

The major data acquisition for this study is focused on the environmental elements that can 

be classified into three categories: (1) time series data, which is the mean annual rainfall in 

2010; (2) raster data, i.e. Interferometric Synthetic Aperture Radar (IfSAR); and (3) vector 

data, i.e. the data on the historical flooded area in 2010, the topographic map from the De-

partment of Survey and Mapping Malaysia (JUPEM) and the soil map from the Minerals and 

Geoscience Department. Among the nine selected flood inducing factors, the attribute values 

of DEM, slope, SPI, TWI, river, and rainfall need to be discretized and consequently fed into 

the BN model. Figure 1 shows the flowchart for the proposed data discretization technique 

based on fuzzy logic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Flowchart for the proposed data discretization technique. 

The proposed data discretization technique consists of two activities, which are the con-

version of the actual data to Min-Max normalization, and the development of membership 

function (MF) to obtain fuzzy discretization. For the development of membership function 

graph, the entropy method is used to find the threshold value in order to develop the graph. 

Digital Elevation Model  

Digital elevation model (DEM) is the major source to derive topographic factors that have 

a direct effect on runoff velocity and flow size. DEM was created using the IfSAR data with a 

resolution of 10m x 10m. IfSAR is an active remote sensing technology that is able to easily 

collect data from huge areas. The resulted dataset is the base of elevation models and digital 

surface. Since the surface conditions are the leading factors that determine the formation of 

flood events, therefore, the use of high-resolution synthetic data was the perfect source to 

derive the topographic factors of elevation, which are DEM, slope angle, curvature, SPI, TWI, 

and distance from river. Figure 2 shows the original data and reclassified data using fuzzy 

discretization.  
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Figure 2. DEM maps: (a) the original DEM and (b) reclassified DEM. 

Slope 

Another important aspect to consider is the slope in the study area. Slope is the basic index 

extracted from DEM to describe the terrain. Heavy rainfall will cause slope failure during 

flood events. This situation might give great impact for the breeding of disasters as the sliding 

surface for the runoff process. The slope gradient is in degrees are shown in Figure 3. 

 

 

 

Figure 3. Slope maps: (a) the original Slope and (b) reclassified Slope. 

Stream Power Index  

Stream power index is the rate that the energy of flowing water is expended on the bed and 

banks of a channel. High stream power values generally correspond with steep, straight, 

scoured reaches, and bedrock gorges. Low stream power values occur in flood plains, broad 

alluvial flats, and slowly subsiding areas, where valley fill is usually deepening and intact. 

The given equations have calculated and generated SPIs as shown in Figure 4. 

 

 

 

Figure 4. SPI maps: (a) the original SPI and (b) reclassified SPI.  

Topographic Wetness Index  

Topographic Wetness Index (TWI) is a steady-state wetness index. The value for each cell 

in the output raster (the TWI raster) is the value in a flow accumulation raster for the corre-
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sponding DEM. Higher TWI values represent drainage depressions; lower values represent 

crests and ridges. In creating the TWI, the following equation is calculated to produce the 

TWI. Figure 5 shows the original and reclassified TWI.  

 

 

 

Figure 5. TWI maps: (a) the original TWI and (b) reclassified TWI. 

River 

Distance from river is a factor that calculates the approximate point between the consecu-

tive points along rivers (polygon). At first, the main river in the study area was extracted us-

ing the IfSAR data. Next, the Euclidean Distance tool is used to create a raster of the distance 

from river. Figure 6 shows the original and reclassified distance from river.  

 

 

 

Figure 6. River maps: (a) the original River and (b) reclassified River. 

Rainfall 

The historical data that includes 18 rainfall stations with mean annual rainfall are obtained. 

In producing the mean annual rainfall intensity, the historical data are considered as the pri-

mary source of information. The available rainfall data is recorded at permanent but very 

disperse rain gauges. Therefore, this study used the Inverse Distance Weighted (IDW) method 

to reproduce the spatial distribution of rainfall data for the entire study areas. The spatial dis-

tribution of rainfall data is illustrated in Figure 7.  

 

 

 

Figure 7. Rainfall maps: (a) the original Rainfall and (b) reclassified Rainfall. 
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RESULT AND DISCUSSION 

For brevity, we discuss an example of the MF graph for rainfall data in Figure 2 after the 

calculation of entropy is complete. The development of the MF graph is to standardize the 

differences of rainfall data for each mukim that can be measured by using one graph. x0, x1, 

x2, x3, and x4 are the threshold values estimated using the Entropy method, which are 0.180, 

0.320, 0.510, 0.610, and 0.690, respectively. Very low, low, moderate, high, and very high are 

the standard stages for all levels. The y axis is the value of MF in the range of zero to one, 

while the x axis is the transformed value from the range of 0 to 1. 

 

Figure 2. The membership function graph for rainfall data 

By using this graph, the converted data is transformed into new representations for interval 

boundaries. The fuzzy set interval is then defined as shown in Table 1. The rainfall data has 

been normalized in the range of 0 to 1 and then transformed into new representations of fuzzy 

discretization by using the MF graph. This new representation has been used to enhance the 

correlation model of BN in the data discretization phase. This is applied to all data with con-

tinuous variables.  

Table 1: Sample of transformed rainfall data 

Rainfall data Normalized classes Linguistic variable Fuzzy discretization 

172.097 0.076 Very Low 1 

173.332 0.130 Very Low 1 

175.876 0.239 Very Low 1 

176.150 0.251 Low 2 

178.540 0.354 Low 2 

181.651 0.488 Moderate 3 

183.187 0.554 Moderate 3 

184.117 0.594 High 4 

185.417 0.650 High 4 

187.886 0.756 Very High 5 

 

Based from the experiments, it has been found that the proposed fuzzy discretization 

method shows better performance. This indicates that incorporating the proposed fuzzy dis-

cretization with the BN model give better results. The results from the performance metrics 

have shown that this method performed well as compared to other discretization methods. 
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In this study, five data discretization techniques for modelling the BN have been com-

pared, namely Fuzzy Discretization, Equal Width, Natural Breaks, Quantile, and Geometrical 

Interval. The results are summarized in Table 2. The performance of the models is based on 

precision, F-measure, and receiver operating characteristic (ROC). 

Table 2: Comparison of average performance assessment of BN models 

 

The performance assessment of BN strongly depends on the choice of the different inter-

val between the compared methods. Good results were obtained from fuzzy discretization 

with the precision of 0.992, F-measure of 0.980, and receiver operating characteristic of 0.984 

for the correlation model. 

CONCLUSION 

Bayesian Network has been widely used to represent the logical relationships between var-

iables. However, many of the flood factors consist of continuous variables that introduce chal-

lenges for the data mining task. Hence, the proposed data discretization method contributes in 

the process to re-encode the continuous variables into discrete variables. Nevertheless, if too 

many intervals are unsuited to the learning process, this will lead to a loss of information; and 

if there are too few intervals, this can lead to the risk of losing some interesting information. 

In brief, incorporating the proposed fuzzy discretization with the BN model for the flood 

event provides better results. 
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