
Proceedings of the 5th International Conference on Computing and Informatics, ICOCI 2015

11-13 August, 2015 Istanbul, Turkey. Universiti Utara Malaysia (http://www.uum.edu.my)
Paper No.

239

374

THE SOFTWARE REQUIREMENTS FRAMEWORK FOR
DOCUMENT CHANGES USING REVERSE ENGINERING

APPROACH

Hannani Aman and Rosziati Ibrahim
University of Tun Hussein Onn Malaysia, Malaysia, {hanani, rosziati@uthm.edu.my}

ABSTRACT. Document changes are center of focus in maintenance phase

during software development life cycle (SDLC). In Agile development

process, document maintenance become crucial as the focus is on technical

maintenance. This paper presents a software requirements framework for

document changes using reverse engineering approach. The framework is

called XML Document Tracker (XML_DocTracker). Based on the

framework, a tool is developed to automate the generation of software

requirement document, due to requirements document changes. The

approach focuses on XML application changes. Class diagram is used to

capture changes semantically rather that syntax of code. Then, the changes

are kept as version factors for generating SRDdue to requirements document

change. This reverse approach is better because in agile development

methodology, developer shall change the codes directly without making any

changes in requirements. The advantage of using the tool is to ease the agile

developer task in document generation.

Keywords: reverse engineering approach, document changes, framework

INTRODUCTION

A change on application during development or maintenance is unavoidable. This is due to

additional functions, the occurrence of errors, changes in requirements and many more. Any

changes on application need to be captured in documented way. Since agile developer docu-

mentation is very tedious and laborious, many approaches has been introduced to assist doc-

umentation in many domains of developments (Kaisti et al., 2013). Therefore, we proposed an

alternative approach that will assist the agile developers generating document changes.

W3C has introduced XML as a language that support a variety of applications, for diverse

applications such as browsing, content analysis, standards commerce communications and

interchange content. It has to share structured data among various diverse software systems

and application domain using its universal format. Specification and standards of XML appli-

cation have been described by XML schema. XML schema has been adapted in various in-

dustries. Each industry has their working group to establish their specification called XML

based standard. As working group evolves, a few version of XML schema have been released.

For instance, electronic Business of XML (ebXML) on electronic business by

OASIS(ebXML Specifications, 2006) and Rich Site Summary for web interchanged data

from Netscape (Rich Site Summary (RSS) by Netscape,2014). Each of this release is called

version.

http://www.uum.edu.my/
mailto:rosziati@uthm.edu.my

Proceedings of the 5th International Conference on Computing and Informatics, ICOCI 2015

11-13 August, 2015 Istanbul, Turkey. Universiti Utara Malaysia (http://www.uum.edu.my)
Paper No.

239

375

A single change in XML schema to the latest version may influence user’s requirements

document that had been used in the previous version. User needs to detect any changes in the

XML document manually. In order to recognize the requirement that changes, he needs to

understand the changes in the XML schema. Since XML Schema is text-based format, it is

hard for the user to detect, understand and rezognize any changes made in the requirement.

Furthermore, viewing version changes need to be capture in the document in order to main-

tain new document version.

In this paper, we present a framework on XML schema versioning for the following moti-

vations. Firstly, we are motivated to show on how reverse approach is used in impacting

XML schema on the requirements document. Secondly, to show on how to use the conceptual

model in viewing changes of requirements when XML Schema evolves. In short, this research

proposes a reverse method to study the impact of XML schema changes on the conceptual

model and from there to generate the requirements document changes.

RELATED WORK

Document changes in XML application starts when (Tan & Goh, 2004) suggest a need to

highlight changes and differences between a preceding version or a variant against original

standard of XML. For the purpose of maintenance, new functionalities on compatibility estab-

lishment are proposed. As the XML standard evolves, focus on updated schema effect were

proposed using new language called eXupdate (Cavalieri, Guerrini, & Mesiti, 2011). While

keeping primitive changes of XML files has been introduced by (Brahmia, Grandi, Oliboni, &

Bouaziz, 2012), these changes only focus on syntax level of XML application in which doc-

ument capture is too technical to be conducted.

Researchers (Klettke, 2007; Klímek, Maly, Mlynkova, & Necasky, 2012; Polák, Necasky,

& Holubová, 2013) have seen the bigger picture of keeping XML Schema changes in seman-

tic level which using the conceptual model. They have called it an evolution – a change in the

domain is made once in the conceptual diagram and then is propagated to the affected XML

schemas. The changes parameters used are Additional, Remove and Rename of element and

attribute. Element and attribute of changes coves at platform specific model which represent

specific of conceptual model (Klímek et al., 2012). These researchers have highlighted the

changes propagated to XML application using colors.

However, changes need to be captured in a documented and structured way rather that

highlighting changes in the conceptual model or in the schema form. Thus we suggest these

changes are captured in a requirement document. Furthermore, forward direction does not

show the reality of XML changes impact on requirement document. Therefore, a reverse ap-

proach is proposed in this work.

XML_DOCTRACKER FRAMEWORK

The software requirements framework for document changes is shown in Figure 1. Based

on Figure 1, the proposed framework is divided into three main steps- a reverse method,

changes detection and requirement document changes. For Step 1, transformation activities on

XML Schema to generate Class Diagram. The transformation rules transforms XML Schema

A to generates Class Diagram A. XML Schema A evolves to XML Schema A’ when there are

changes in XML Schema A. XML Schema A’ will repeat Step 1 of reverse transformation

rules to generate new Class Diagram denoted as Class Diagram A’.

In Step 2, versioning algorithm are use to detect differences between these class diagrams

and marked as called traceability link. The traceability link between Class Diagram A and

http://www.uum.edu.my/

Proceedings of the 5th International Conference on Computing and Informatics, ICOCI 2015

11-13 August, 2015 Istanbul, Turkey. Universiti Utara Malaysia (http://www.uum.edu.my)
Paper No.

239

376

Class Diagram A’ is recognized as version factor. Finally in step 3, a version factor generates

new version of Software Requirements document.

The step for Reverse Transformation Rules are explained in detail in Transformation Rules

section. The step for Traceability Link is explained in detail in Versioning Rules section.

Finally, the step for version factor for generating SRD is explained in details in Versioning

Factors section.

THE TRANSFORMATION RULES

XML Schema is the main resource of XML application which will be used as the input of

the framework. XML schema A and XML Schema A’ consists of XML components(type

definitions, element declarations, attribute declarations, attribute group definition and model

group definition). A single XML schema may consist a few pages text description of a XML

document. When a new version is introduced, it is hardly read and recognizes any changes. It

needs to be transformed into a conceptual diagram to view the semantic changes. The needs

in reversing the development process lead to this transformation rules.

Figure 1. XML_DocTracker Framework

Informal transformation rules may lead to ambiguous results because of individual inter-

pretation of words. In order to ensure the correctness and accuracy of the reverse transfor-

mation rules, one to one mapping transformation using formal method has been proposed.

Formalization of transformation rules generates a class diagram denoted as Class Diagram A.

XML Schema A’ are a new version of XML Schema A. XML Schema A’ needs to be trans-

formed using Transformation Rules to have an equivalent compared with the preceding

schema.This will generate Class Diagram A’. Details about these formal transformation rules

can be found in our previous work (Aman & Ibrahim, 2014). The simplified processes of this

step are shown in Figure 2.

XML Schema

Formal Transformation

Rules

 Class

 Attributes

 Types definition

 Model Group

 Attribute Group

Class Diagram A

Figure 2. Reverse Transformation Process

Step 1 : Reverse

Transformation

Rules

XML Schema

A

XML Schema

A’

Class Diagram

A

Class Diagram

A’

Step 3 : Versioning factor

Step 2 :

Traceability Link

http://www.uum.edu.my/

Proceedings of the 5th International Conference on Computing and Informatics, ICOCI 2015

11-13 August, 2015 Istanbul, Turkey. Universiti Utara Malaysia (http://www.uum.edu.my)
Paper No.

239

377

THE VERSIONING RULES

The modification is generated on 3 atomic operations classified on additional, removal and

rename operations of XML basic components (element, attribute, type definition, model

group and attribute group). An additional change involves in adding any element or attribute

in the schema wheares a removal change involves any removing element of XML compo-

nents. Meanwhile, rename operation involves modification element’s name to a new name

with the same attributes. These are atomic operation of an evolution of XML schema. Combi-

nation operation involves combinations of these 3 atomic operations. These combination will

generate new semantic changes such as migration of element to another element where in-

volves removal and additional at different level of class diagram.

Differences between these two class diagrams from the preceding class diagram are linked

to newer class diagram. This link is called as traceability link due to the changes occurs.

Traceability Link :
Changes of

 Additional

 Remove

 Rename

 Combinations

Class Diagram A’Class Diagram A

Figure 3. Traceability Link Process

Our work proposed a new combination of atomic operations. It involves additional, re-

moval and modification of element where the purpose of combination shows the evolution of

an element. Based on proposed changes, Versioning Rules (VR) have been introduced as

follows in Table 1:

Table 1. Versioning Rules (VR)

VR Description

VR1 Each class of both class diagrams has been compared - level by level of

the diagrams.

VR2 Each Added classes and Removed classes are compared.

VR3 Classes which have the same attribute and same relationship are tested

with string similarity. High result of similarity tests the changes of new

versions of class diagram.

VERSONING FACTORS

From the traceability link, version factors are generated. It may consists of additional, re-

moval, rename and the combination of them. These factors are then being used for the trans-

formation of a new version of requirement changes as a new version of software requirements

document.

http://www.uum.edu.my/

Proceedings of the 5th International Conference on Computing and Informatics, ICOCI 2015

11-13 August, 2015 Istanbul, Turkey. Universiti Utara Malaysia (http://www.uum.edu.my)
Paper No.

239

378

Versioning Factors : any traceability link that
recognize as changes generates new version of

requirements document.

 Additional

 Remove

 Rename

 Combinations

Traceability Link :

Changes of

Class Diagram A’

XML Schema A

Formal Transformation

Rules

 Class

 Attributes

 Types definition

 Model Group

 Attribute Group

Class Diagram A

XML Schema A’

Formal Transformation

Rules

 Class

 Attributes

 Types definition

 Model Group

 Attribute Group

Figure 4. Versioning Factors Process

CONCLUSION

Agile developer maintains application with versions. These versions need to be document-

ed properly. XML Schema is one of the components in application that also need to be docu-

mented due to changes. Therefore, this paper proposed a framework using a reverse engineer-

ing approach to detect document changes on XML schema.

In our work, the approach contains 2 important rules which are transformation rules for re-

verse approach and versioning rules to detect changes on semantic of XML application.

Therefore, the proposed approach is an alternative approach to assist agile developer in XML

application domain to generate document changes. The version factors in document changes

may be used as a control document for future work.

ACKNOWLEDGMENTS

The authors would like to thanks Malaysian Ministry of Education (MoE) for supporting

this research under the Fundamental Research Grant Schema (FRGS).

REFERENCES

Aman, H., & Ibrahim, R. (2014). Formalization of Transformation Rules from XML Schema to UML

Class Diagram. International Journal of Software Engineering and Its Application, 8(12), 75–

90.

Brahmia, Z., Grandi, F., Oliboni, B., & Bouaziz, R. (2012). Versioning of Conventional Schema in the

tXSchema Framework. 2012 Eighth International Conference on Signal Image Technology and

Internet Based Systems, 510–518. doi:10.1109/SITIS.2012.153

http://www.uum.edu.my/

Proceedings of the 5th International Conference on Computing and Informatics, ICOCI 2015

11-13 August, 2015 Istanbul, Turkey. Universiti Utara Malaysia (http://www.uum.edu.my)
Paper No.

239

379

Cavalieri, F., Guerrini, G., & Mesiti, M. (2011). Updates on XML documents and schemas. 2011 IEEE

27th International Conference on Data Engineering Workshops, 308–311.

doi:10.1109/ICDEW.2011.5767672

EbXML Specifications. (2006). Retrieved from http://www.ebxml.org/specs/index.htm

Kaisti, M., Rantala, V., Mujunen, T., Hyrynsalmi, S., Könnölä, K., Mäkilä, T., & Lehtonen, T. (2013).

Agile methods for embedded systems development - a literature review and a mapping study.

EURASIP Journal on Embedded Systems, 2013(1), 15. doi:10.1186/1687-3963-2013-15

Klettke, M. (2007). Conceptual XML Schema Evolution. In BTW Workshop “Model Management und

Metadaten-Verwaltung”, Aachen. 2007.

Klímek, J., Maly, J., Mlynkova, I., & Necasky, M. (2012). Evolution and change management of XML

based system. Journal of Systems and Software, 85, 683–707. doi:10.1016/j.jss.2011.09.038

Polák, M., Necasky, M., & Holubová, I. (2013). DaemonX : Design , Adaptation , Evolution , and

Management of Native XML (and More Other) Formats. In IIWAS ’13: Proceedings of

International Conference on Information Integration and Web-based Applications & Services,

484. doi:10.1145/2539150.2539159

Rich Site Summary (RSS) by Netscape. (2014). Retrieved from

http://www.sigmaxi.org/programs/international/news.082004.shtml

Tan, M., & Goh, A. (2004). Keeping Pace with Evolving XML-Based Specifications, 280–288.

http://www.uum.edu.my/

