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ABSTRACT. Ant colony optimization (ACO) is a stochastic search method 

for solving NP-hard problems. The exploration versus exploitation dilemma 

rises in ACO search. Reactive max-min ant system algorithm is a recent 

proposition to automate the exploration and exploitation. It memorizes the 

search regions in terms of reactive heuristics to be harnessed after restart, 

which is to avoid the arbitrary exploration later. This paper examined the as-

sumption that local heuristics are useless when combined with local search 

especially when it applied for combinatorial optimization problems with 

rugged fitness landscape. Results showed that coupling reactive heuristics 

with k-Opt local search algorithms produces higher quality solutions and 

more robust search than max-min ant system algorithm. Well-known com-

binatorial optimization problems are used in experiments, i.e. traveling 

salesman and quadratic assignment problems. The benchmarking data for 

both problems are taken from TSPLIB and QAPLIB respectively.  

Keywords: ant colony optimization, reactive search, quadratic assignment 

problem, traveling salesmen problem 

INTRODUCTION 

Ant colony optimization (ACO) algorithms are multi-agent systems utilized for solving 

hard combinatorial optimization problems. Despite being one of the youngest metaheuristics, 

there is a large number of applications of ACO algorithms (Stützle, Lopez-Ibanez, & Dorigo, 

2010; Talbi, 2009). The exploration versus exploitation dilemma exists in metaheuristics 

search not only ACO (Blum & Roli, 2003). It arises when promising regions of search space 

need to be quickly identified without spending too much time in poor regions (Dorigo & 

Stützle, 2010). Reactive search is an emergent approach for improving the internal behavior 

of metaheuristics (Battiti, Brunato, & Mascia, 2008). Restarting the search with the aid of 

memorizing the search history and parameter adaptation is the soul of reaction. It is to in-

crease the exploration only when needed. Reactive max-min ant system (RMMAS) follows 

this approach and tries to improve the performance of ACO algorithms by proposing reactive 

heuristics to be considered as local heuristics for ants to find their way in search space 

(Sagban, Ku-Mahamud, & Shahbani, 2014). However, there is a proposition among ACO 

researchers that local heuristics becomes useless component when local searches is combined 

(Stützle, 1999). This hypothesis increased when ACO applied to combinatorial optimization 

problems with rugged search space such as quadratic assignment problem (QAP) (Dorigo & 
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Stützle, 2004). Apart from that, reactive search relies on parameter adaptation in addition to 

restarts strategy.  Hence, the contribution of the present paper lies in the following aspect. 

Reactive heuristics are tested against the circumstance of combining local searches while 

applying to QAP where the fitness landscape is more rugged than the one in traveling sales-

man problem (TSP) where the induced RMMAS first applied.  

The rest of the paper is organized as follows. The RMMAS algorithm is briefly described 
followed by the description of the combination with 3-Opt and 2-Opt local searches for TSP 
and QAP respectively (Johnson & McGeoch, 2007). Subsequence sections focus on the appli-
cation to QAP and the experimental design. The results are then presented and the conclusion 
is drawn.     

REACTIVE MAX-MIN ANT SYSTEM  

RMMAS is a recently proposed algorithm on top of max-min ant system (MMAS), the 

prominent ACO variant (Sagban et al., 2014). In this algorithm the artificial ants react to any 

stagnation behavior by redirecting their search toward unexplored regions in the search space. 

RMMAS relies on local heuristics called reactive heuristics to manage that reaction. A 

memory model, denoted by RH (refer to reactive heuristics), utilizes to memorize the history 

of search. The process of memorizing redefines the main exploration and exploitation compo-

nents in ACO, the pheromone update and the probabilistic distribution. For the pheromone 

update, the definition of the evaporation rule is reformulated as follows.  

𝜏𝑖𝑗 = (1 − 𝜌). 𝜏𝑖𝑗       ∀ 𝜏𝑖𝑗  ∈ 𝑇                                                                                                                            (1) 

𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑒 (𝑅𝐻, 𝑇, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) = {
𝑅𝐻 ← 𝑟ℎ1   𝑖𝑓𝜏𝑖𝑗 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑅𝐻 ← 𝑟ℎ0   𝑖𝑓𝜏𝑖𝑗 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
                                                         (2)   

Where 𝜌 is the evaporation rate, 𝑇 is the pheromone matrix, 𝑅𝐻 is the reactive heuristics ma-

trix, 𝑟ℎx is either zero (0) or one (1) while its value relies on the value of 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, i.e. the 

minimum level of pheromone. This new formula differs from the standard evaporation rule of 

MMAS.  

When the optimization process starts the entries of matrix RH set to zero (0). With contin-

uing the process the pheromone density accumulates on some pheromone trails and disap-

pears in some others because of the pheromone update dynamism. Together with changing 

RH values to zero (0) when the trails below the threshold and to one (1) otherwise, the said 

memory model records the history of search.  

After some run time, solution components associated with high pheromone density will at-

tract more artificial ants. To reduce the risk of stagnation in which all ants follow the same 

path, the restarts strategies are used. Sagban et al. (2014) identified the trigger to determine 

the restart point effectively. Once the restart trigger the reactive heuristics will be considered 

as local heuristics in the probabilistic distribution as follows.   

𝑝𝑖𝑗
𝑘 = {

𝜏𝑖𝑗
𝛼 . 𝜇𝑖𝑗

𝛽
. 𝑟ℎ𝑖𝑗

∑ 𝜏𝑖𝑙
𝛼 . 𝜇𝑖𝑙

𝛽
. 𝑟ℎ𝑖𝑙𝑐𝑖𝑙∈𝑁(𝑆)

 𝑖𝑓 𝑐𝑖𝑙 ∈ 𝑁(𝑆) 𝑎𝑛𝑑 𝑟𝑒𝑠𝑡𝑎𝑟𝑡 𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑒

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ,                                                          (3) 

Where k is the index of current active ant,  𝜇 is the pre-heuristic associated with traveling 

salesman problem, N is the list of unvisited components (cil), 𝛼 and 𝛽 are parameters to adjust 

the weights of pheromone and pre-heuristics. 
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Although the RMMAS algorithm is successfully applied to TSP, it does not yet examined 

when coupled with local search routines. The impression in ACO community is that local 

heuristics become useless when hybridized with local search. However, the results in this 

paper proved that this is not the case with reactive heuristics.   

The solutions’ quality is greatly improved if it is extended to include local search. The 

question is which local search? Earlier experiments (Dorigo & Stützle, 2004) showed that 

coupling ACO with K-Opt algorithms (Johnson & McGeoch, 2007) is much more effective 

than coupling with others. In the TSP case, the 3-Opt algorithm moves three (3) components 

of a solution with a different set of three components to improve the quality of solutions. In 

this kind of local search the neighborhood structure is larger than other k-Opt algorithms. This 

results in time consuming process. One speedup technique is using don’t look bit data struc-

ture in which a bit is associated with each node of the sequence. At the beginning of the 

search all bits are turned off. The bit associated with node h is turned on when a search for an 

improving move starting from h fails. The bit associated with node h is turned off again when 

an improving exchange involving h is executed. The use of don’t look bits favors the explora-

tion of nodes that have been involved in a profitable exchange. Another technique is the near-

est neighborhood list which in RMMAS was twenty (20) nodes length. In the QAP case, the 

2-Opt algorithm moves two components instead of three. Yet, first improving move is imme-

diately performed can be used as a speedup technique. RMMAS is using a truncated first-

improvement 2-opt. In particular, at most two complete scans of the neighborhood are done. 

The local search is fast even it is not necessarily returns a locally optimal solution. 

APPLICATION OF RMMAS TO QAP 

This section discusses the circumstance of applying reactive heuristics to QAP the 

hardest NP-hard problem. It concerns the situation when local search routines are coupled 

with RMMAS so that artificial ants can traverse such fitness landscape without trapping in 

local optima. In QAP implementation application the pre-heuristics information is omitted to 

show the role of reactive heuristics.   

The QAP can best be described as the problem of assigning a set of facilities (n) to a set 

of locations (n) with given distances between the locations and given flows between the fa-

cilities. The flows and locations are two n × n matrices dented by A and B respectively, 

where 𝑎𝑖𝑗 is the flow between facility i and j and 𝑏𝑟𝑠 is the distance between location r and s. 

The objective is to place the facilities on locations in such a way that the sum of the product 

between flows and distances is minimal. The problem can be formulated as follow.  

𝑓(∅) =  ∑∑𝑎𝑖𝑗𝑏∅𝑖∅𝑗

𝑛

𝑗=1

𝑛

𝑖=1

                                                                                                                                         (4) 

When RMMAS is applied to QAP the way the solutions are constructed after restart has to 

be defined. It is by assigning facilities in some order to locations. So that the pheromone trails 

𝜏𝑖𝑗 refers to specific location for facilities, that is, 𝜏𝑖𝑗 represent the desirability of assigning 

facility i to location j. The ants are used to construct valid solutions for the QAP assigning 

every facility to exactly one location and not using a location by more than one facility. In 

this way, a facility is randomly chosen among unassigned ones. Then, this facility is placed in 

free location according to the following probabilistic distribution rule. 

𝑝𝑖𝑗
𝑘 = {

𝜏𝑖𝑗
𝛼 . 𝑟ℎ𝑖𝑗

∑ 𝜏𝑖𝑙
𝛼 . 𝜏𝑖𝑙𝑙 𝜖 𝑈(𝑘)

, 𝑖𝑓 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗 𝑖𝑠 𝑓𝑟𝑒𝑒 𝑎𝑛𝑑 𝑟𝑒𝑠𝑡𝑎𝑟𝑡 𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑒 

0 ,                                                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                      (5) 
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where U(K) denotes the set of unassigned items. The intuition behind this rule is to prefer the 

visible 𝜏𝑖𝑗  × 𝑟ℎ𝑖𝑗 values which are the unvisited locations j for facility i. RMMAS utilizes the 

pseudo-random proportional rule (one of the important features in one of the best ACO vari-

ants, namely ant colony system).  

EXPERIMENTAL DESIGN 

The goal of the conducted experiments is to test whether the reactive heuristics useful or 

not when RMMAS is combined with two of k-Opt local searches for TSP and QAP. To 

achieve these goals, comparisons with MMAS, the best ACO variants in solving TSP and 

QAP, are conducted. Each comparison is conducted ten (10) times to avoid any stochastic 

effect.  The experiments were conducted on Windows 8 64-bit operating system, processor 

Intel Core i3-3217U with CPU @ 1.80GHz, RAM 4GB. The proposed algorithm was coded 

in C language. The QAP and TSP instances are selected from QAPLIB (Burkard, Cela, 

Karisch, & Rendl, 1997) and TSPLIB (Reinelt, 1991) repositories respectively. For QAP 

case, selected instances were bur26a, bur26b, bur26c, bur26d, bur26e, bur26f, bur26g, 

bur26h, chr25a, els19, kra30a, kra30b, tai20b, tai30b, tai35b, tai40b, tai50b, tai60b and 

tai80b while for the TSP case they were d198, lin318, pcb442, rat783 and pcb1173. Running 

time for TSP is set to 10 seconds while for QAP it was proportional to the size and the struc-

ture of the instance as in Gambardella, Taillard, and Dorigo (1999). The parameter settings 

are as follows. The number of ants (m) is equal to five (5). The pheromone intensity (α) and 

pre-heuristic distance (β) are equal to one (1) and two (2) respectively. Evaporation rate (ρ) is 

0.5. The initial pheromone (τ0) is set to 1 𝜌 ∗ 𝐶𝑛𝑛⁄ . The exploration/exploitation parameter q0 

is equal to 0.98. The metrics that we need to test are the average, standard deviation and the 

best quality of solutions. The non-parametric statistical tests Wilcoxon and Chi-square are 

used to verify the significance of the improvement in quality. Wilcoxon signed-ranks test is 

based on the positive and negative ranks of each of the said matrices in the comparison. The 

test performed with 0.05 significance level and one-tailed hypothesis.  

RESULTS  

This section presents the results of the combination with 3-Opt local search and the results 

of the application to QAP. In the first part Figure 1(a) visualizes (in the y-axis) the quality of 

solutions measured by the standard deviation of the best solutions found during ten (10) runs 

in TSP problem. The x-axis presents for each TSP instance the performance of each of the 

competitive algorithms, i.e. MMAS3-opt and RMMAS3-opt algorithms. The results showed that 

the proposed RMMAS3-op produce good solutions for all TSP instances. The fact that pre-

heuristics is useless with local search cannot be imposed for reactive heuristics. The experi-

ments showed that the enhanced algorithm outperformed the standard one because of its abil-

ity to avoid the premature convergence which helps in increasing the quality of solutions. 

In the second part of results Figure 1(b) presents the statistical results of applying 

RMMAS to QAP with comparison with MMAS. Wilcoxon signed-ranks statistical test 

showed that the search of RMMAS is more robust as it outperforms the original one in the 

number of ranks for standard deviation and mean of the quality of solutions. In the compari-

son of means, the MMAS algorithm collected (37) ranks while the proposed algorithm col-

lected (135) ranks. The result was significant at p ≤ 0.05 while p-value was equal to 

(0.001659). In the comparison of standard deviations, the MMAS algorithm collects (89) 

ranks while RMMAS collects (101) ranks. The p-value was (0.40517) and the result was not 

significant at p ≤ 0.05. In the comparison of best solutions, the MMAS collected (40) ranks 

while RMMAS collects (26) ranks. The p-value was 0.26763 and the result was not signifi-

cant at p ≤ 0.05.    
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                                         (a)                                                                    (b) 

Figure 5 (a).The Performance of RMMAS (3-Opt) versus MMAS (3-Opt) for TSP, 

(b).Bar Chart for Sum of Ranks Obtained from Applying RMMAS versus MMAS in 

QAP 

The results are inconclusive. To verify the significance of the enhancement, the statistical 

Chi-square test for frequencies is performed with significance level equal to 0.05.The result 

was significant at p < 0.05 because the p-value is < 0.00001. Table 1 provides information 

about the observed cell totals and (the expected cell totals).  

Table 1. Frequencies of Ranks Obtained from Applying RMMAS versus MMAS in QAP 

Categories Ranks of RMMAS Ranks of MMAS Row totals 

Ranks of means 135  (105.29) 37  (66.71) 172 

Ranks of the SD’s 101  (116.31) 89  (73.69) 190 

Ranks of the best solution 26  (40.40) 40  (25.60) 66 

Column totals 262 166 428 (Grand Total) 

CONCLUSION AND FUTURE WORK 

This paper has presented an experimental analysis of the reactive heuristics choice made in 

RMMAS algorithm when coupled with k-Opt local searches. A new application to the QAP 

has also been included. The analysis shows that combining reactive heuristics with k-Opt 

local searches has a profound impact on the quality of solutions obtained for TSP. For the 

QAP application, the quality improvement was inconclusive. Although the RMMAS search 

was more robust than MMAS, it needs more adaptive features to automate the exploration and 

exploitation before triggering restart.  

The experimental analysis presented in this paper can be further explored by using robust 

exploration indicators to adjust the exploration and exploitation in RMMAS. This can be done 

through the on-line parameter controllers.  
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