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ABSTRACT. Training an artificial neural network (ANN) is an 

optimization task since it is desired to find optimal neurons‘ weight of a 

neural network in an iterative training process. Traditional training 

algorithms have some drawbacks such as local minima and its slowness. 

Therefore, evolutionary algorithms are utilized to train neural networks to 

overcome these issues. This research tackles the ANN training by adapting 

Mussels Wandering Optimization (MWO) algorithm. The proposed method 

tested and verified by training an ANN with well-known benchmarking 

problems. Two criteria used to evaluate the proposed method were overall 

training time and classification accuracy. The obtained results indicate that 

MWO algorithm is on par or better in terms of classification accuracy and 

convergence training time. 

Keywords: Artificial neural network, Mussels Wandering Optimization, 

supervised training, Optimization, Evolutionary algorithms 

INTRODUCTION 

The artificial neural network (ANN) is an interconnected group of processing units 

―artificial neurons‖ via a series of adjusted weights; these neurons use a mathematical model 

for information processing to accomplish a variety of tasks such as identification of objects 

and patterns, making decisions based on prior experiences and knowledge and prediction of 

future events based on past experience (Lin, 2007; Bennett, Stewart & Beal, 2013; Dhar et. 

al., 2010). 

ANNs are considered as a simplified mathematical approximation of biological neural 

networks in terms of structure and function. Basically, the most challenging aspects of ANN 

are: the mechanism of learning (training algorithms) that adjusts the neurons‘ weights values 

to minimize the error function (a measure of the difference between the actual ANN output 

and the desired output), and the mechanism of information flow that depends on ANN 

structure (Ghosh-Dastidar, & Adeli, 2009; Suraweera, & Ranasinghe, 2008). 

The training process deals with adjusting and altering the weights and/or structure of the 

network depending on a specific training algorithm. The training-dataset is fed to the network 

in order to determine its outputs during the training process; the objective of this process is to 

minimize an ANN‘s error function. 

Training ANN fall into two main categories: traditional learning algorithms and 

Evolutionary-based training algorithms. Gradient-based technique such as Back-propagation 

(BP) is the most well-known algorithm for traditional learning algorithms. This type of 
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learning algorithms suffer from its slowness because of improper learning steps 

(Silva, Pacifico, & Ludermir, 2011; Huang, Zhu, & Siew, 2004). Therefore, numerous 

iterative learning steps are necessary for the sake of obtaining better accuracy and 

performance. In addition, traditional learning algorithms simply fall into local minima 

problem (Kattan, Abdullah, 2011). 

Evolutionary-based training algorithms that depend on global optimization methods 

overcome the disadvantages of traditional learning algorithms (Kattan, Abdullah, 2011; 

Karaboga, Akay, & Ozturk, 2007). The search space of the ANN weights training process is 

considered as continuous optimization problem because it is high-dimensional and 

multimodal, also it could be corrupted by noises or missing data (He, Wu, Saunders, 2009; 

Karaboga, Akay, & Ozturk, 2007). 

Complex optimization problems have been handled by Meta-heuristics algorithms, such as 

Evolutionary-based training algorithms inspired biologically, such as Genetic algorithm (GA) 

(Gao, Lei, & He, 2005), Artificial Bee Colony (ABC) (Karaboga, Akay, & Ozturk, 2007), 

Group Search Optimizer (GSO) (He, Wu, Saunders, 2009a; He, Wu, Saunders, 2009b), 

Particle Swarm Optimization (PSO) (Su, Jhang & Hou, 2008) and the Harmony Search (HS) 

algorithm which is inspired from the improvisation process of musicians (Kattan, Abdullah, 

2011; Kattan, Abdullah, & Salam 2010). 

Nevertheless, most of these evolutionary-based training algorithms were based on using 

the classical XOR problem, such as the method proposed by Karaboga et. al. (2007). So, most 

of these algorithms were unable to generalize its superiority against others (Kattan, Abdullah, 

2011), because the training dataset size of this problem is too small. Furthermore, the XOR 

problem does not have local minima (Hamey, 1998). 

This work proposes a new method for training feed-forward ANN by adapting MWO 

algorithm. The proposed method aims to minimize the ANN training time while maintaining 

an acceptable accuracy rate. This objective was achieved with making use of well-known 

benchmarking problems that considered larger and more complex than classical XOR 

problem.     

The rest of this paper is organized as follows: Section II introduces the MWO algorithm; 

its coefficients and equations, section III presents the proposed method and the adaptation 

process of MWO algorithm in ANN, section IV covers and discusses the experimental setup 

and results. Finally, section V presents the conclusions and future works. 

MUSSELS WANDERING OPTIMIZATION ALGORITHM (MWO) 

MWO is a novel meta-heuristic algorithm, ecologically inspired for global optimizations 

by Jing An et. al. (An, Kang, Wang, & Wu, 2012). MWO is inspired by mussels‘ movement 

behavior when they form bed pattern in their surroundings habitat. Stochastic decision and 

Le´vy walk are two evolutionary mechanisms used mathematically to formulate a landscape-

level of mussels‘ pattern distribution. 

The population of mussels consists of N individuals, these individuals are in a certain 

spatial region of marine ‗‗bed‘‘ called the habitat. The habitat is mapped to a d-dimensional 

space S
d
 of the problem to be optimized, whereas the objective function value f(s) at each 

point s   S
d
 represents the nutrition provided by the habitat. Each mussel has a position 

xi  (xi1, . . .,xid); i  NN = {1,2,3, . . ., N} in S
d
, which therefore, they forming a specified 

spatial bed pattern. 
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The MWO algorithm is composed of six steps as follows: (1) Initialization of mussels-

population and the algorithm parameters. (2) Calculate the short-range density ζs and long-

range density ζl for each mussel. (3) Determine the movement strategy for each mussel. (4) 

Update the position for all mussels. (5) Evaluate the fitness of each mussel mi after position 

updating. (6) Examine the termination criteria. The MWO algorithm is shown in Figure 1, 

where the list of equations used by MWO is presented in APPENDIX A. 

Figure 1. MWO Algorithm 

PROPOSED METHOD 

In this work, the Feed-forward ANN weights (including biases) are adjusted and tuned 

using MWO algorithm in order to solve a given classification problem as illustrated in Figure 

2. MWO is chosen to train the ANN because of its great ability to tackle the hard optimization 

problems. As well as, MWO parameters (specially, shape parameter  of the Le´vy 

distribution) can be adjusted to fit any problem.  The ANN is composed of three types of 

layers, namely, input, hidden and output layer. Each layer contains a number of neurons, 

which obtain their inputs from previous neurons-layer and forward the output to their 

following neurons-layer. 

Vector-based scheme is adapted in this work to represent the Feed-forward ANN (He, Wu, 

Saunders, 2009b; Kattan, Abdullah, Salam, 2010; Fish, et. al., 2004). Accordingly, each ANN 

is represented by a set of vectors: Input-vector, Hidden-vector, Output-vector, Weight-IH-

vector, Weight-HO-vector, bHidden-vector, and bOutput-vector. These vectors form the complete 

set of ANN structure with their corresponding weights and biases. 

(1)Initialization of mussels-population and the algorithm parameters: 

1.1 Generate N mussels and placed them uniformly in space S
d
. 

1.2 Set the algorithm parameters: maximum generation G, range-references coefficients of 𝛼 and𝛽, 

space scale factor𝛿, moving coefficients a, b, and c, and walk scale factor𝛾. 

1.3 For each mussel mi evaluate its initial fitness by computing the objective function f (xi). 

1.4 Using the calculated objective function f (xi) find the best mussel and record its position as xg. 

(2) Calculate the short-range density ζs and long-range density ζl for each mussel: 

2.1Using all mussels‘ coordinate positions, compute the distances Dij; i, j  NN between any two 

mussels by using Eq. (1). 

2.2Compute the short-range reference rs and long-range reference rl by Eq.(2). 

2.3For all mussels, calculate their ζsi and ζli ; i  NN by using Eq. (3) and (4), respectively. 

(3) Determine the movement strategy for each mussel: 

3.1Calculate the moving probability Pi of mussel mi according to the short-range density ζsi and 

long-range density ζli by using Eq. (5). 

3.2Determine the movement, if Pi = 1, calculate its step lengthli by Eq. (6). 

(4) Update the position for all mussels: 

For all mussels compute the new position coordinate 𝑥 i of mussel mi in S
d
by using Eq. (7). 

(5) Evaluate the fitness of each mussel mi after position updating: 

5.1Calculate the objective function f(𝑥 ) for the new positions. 

5.2 Rank the solutions in order to find the global best mussel mg, and update the best record [best 

position xg and optimal fitness f*(xg)]. 
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The dataset file that includes the input patterns is read first. Then the population of 

mussels is generated. Each individual mussel represents a complete feed-forward ANN. After 

that, the MWO is applied repeatedly until the training termination condition is met. The sum 

squared errors (SSE) is considered as the objective function to evaluate the mussel fitness, i.e. 

minimizing the SSE. The bipolar-sigmoid activation function is used because of its 

superiority over hard-limited or linear threshold functions (Kasabov, 1998). 

Figure 2. Schematic diagram of MWO-based training of ANN 

EXPERIMENTAL SETUP AND RESULTS 

In order to evaluate the MWO optimization algorithm, four widely-used benchmark 

classification datasets have been used. The dataset obtained from UCI Machine Learning 

Repository (Frank, & Asuncion 2013) namely, Ionosphere dataset, Magic dataset, Wisconsin 

Breast Cancer dataset and Diabetes dataset. The ANN structure was designed based on 3-

layer (input-hidden-output) with varying number of neurons depending on the dataset 

problem as demonstrated in Table1. 

During the initialization step of MWO algorithm, the collection of its coefficients and 

parameters values were set. These values were set as in (An, Kang, Wang, & Wu, 2012) and 

there were stable for all datasets and during all the training and testing sessions. The training 

termination condition used is the number of generation G is set to 100. 

Ten individual sessions were conducted for each dataset, each session has two phases: 

training and testing phase. The best result out-of-ten approach which has been used in recent 

literature i.e. Kattan & Abdullah (2011) is also used in this work. The best result achieved out 

of ten is reported and compared against the following algorithms: Improvised Harmony 

Search algorithm (IHS), Back-Propagation algorithm (BP) and Genetic Adaptive Neural 

Network Training (GANN). 

Table 1. Benchmarking datasets 

Dataset Number of Patterns ANN Structure Weights and Biases 

Magic 9510 10-4-2 54 

Ionosphere 351 33-6-2 218 

Diabetes 768 8-7-2 79 

Breast Cancer 699 9-8-2 98 

ANN Represented by 

Mussel

Adjust ANN weights 

and biases by MWO 

Algorithm

Compare

Desired Output

Actual Output

Error

Input Patterns
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Magic Dataset 

Magic dataset is very huge, originally it includes 19,020 patterns. In order to get results in 

reasonable time, 50% of it has been used; i.e. number of patterns is 9510. MWO algorithm 

outperforms all other algorithms in terms of training time, as it needs 1.8 minute to initialize 

and train the whole dataset, while others suffer in this issue. On the other hand, MWO ranked 

second in terms of classification accuracy, as BP reports the highest accuracy with 83.9%.  

The result of training time and classification accuracy for Magic dataset is given in Table 2. 

Ionosphere Dataset 

Ionosphere dataset originally has 34 input parameters. By reviewing the input values, the 

second input has the same value for all patterns, for this reason the second input was omitted. 

MWO algorithm outperforms all other algorithms in terms of training time. The Ionosphere 

dataset has 351 patterns with 33 input features. In terms of classification accuracy MWO 

ranked last, while all other algorithms have near values. This could be as a result of 

Ionosphere dataset has many similar input values which made MWO algorithm not able to 

distinguish the different classes of this dataset clearly. In addition, the adapted MWO 

algorithm in this study uses the recommended coefficients and parameters in (An, Kang, 

Wang, & Wu, 2012); perhaps other values of these coefficients could give a better result. The 

result of training time and classification accuracy of ANN for Ionosphere dataset is given in 

Table 2. 

Wisconsin Breast Cancer Dataset 

The Wisconsin Breast Cancer Dataset is another well-known benchmark classification 

problem. The Wisconsin Breast Cancer Dataset contains 699 instances; the dataset has only 6 

missing data values, whereas these patterns were removed. MWO algorithm outperforms all 

other algorithms in terms of training time, as it needs three minutes to initialize and train the 

whole dataset, other algorithms suffer in this criterion as they need more than 10 minutes. In 

other respects, MWO ranked second in terms of classification accuracy in line with GA, as 

IHS reports the best accuracy. The result of training time and classification accuracy of ANN 

for Cancer dataset is given in Table 2. 

Pima Indians Diabetes Dataset 

The classification problem of Diabetes diagnostic is whether the patient shows positive 

signs of diabetes according to World Health Organization criteria. The Diabetes database has 

768 patterns with 8 input features.  MWO algorithm scores the best in terms of training time, 

where it reports less than three minutes to initialize and train the Diabetes dataset. Other 

algorithms suffer in this criterion with varying amount of time, whereas BP reports the worst 

result with more than 5.5 hours. In terms of classification accuracy, MWO ranked last, but it 

has very close accuracy percentage to other algorithms. The result of training time and 

classification accuracy of ANN for Diabetes dataset is given in Table 2. 

Table 2. Training time and classification accuracy for different datasets 

Algorithm 
Classification Accuracy Training Time (hh:mm:ss) 

MWO IHS GANN BP MWO IHS GANN BP 

Magic 78.3% 77.39% 77.87% 83.97% 0:01: 48 1:59:13 0:48:18 4:35:

42 
Ionosphere 85.7% 94.37% 94.37% 95.77% 0:03: 49 0:03:58 0:35:57 0:24:

43 
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Breast 

Cancer 

98.5% 100.0% 98.5% 95.7% 0:03:00 0:10:19 0:10:30 0:27:

55 
Diabetes 75.1% 76.6% 79.8% 78.5% 0:02:48 0:11:10 0:29:28 5:30:

42  

MWO appears as competitive in both criteria for the different datasets, however, the 

achieved results of MWO are reported using the recommended values of coefficients and 

parameters in (An, Kang, Wang, & Wu, 2012). The shape parameter ( ) of the Le´vy 

distribution that used in MWO is sensitive to dataset problem; each dataset problem may has 

its own value that can make MWO performs well. This reason makes some degradation in 

MWO performance regarding classification accuracy. Perhaps other values of shape 

parameter ( ) could improve the classification accuracy and training time more.  

CONCLUSIONS  

In this paper, the Mussels Wandering Optimization (MWO) algorithm which is a novel 

and simple global optimization algorithm has been adapted and used to train feed-forward 

artificial neural networks. The pattern-classification problem has been used for algorithm 

testing purposes.  

Two criteria are considered in the performance evaluation process; over all training 

convergence time and classification accuracy. The results showed that the MWO algorithm 

has been successfully adapted and applied to train feed-forward artificial neural networks. 

The results also indicate that MWO algorithm is competitive in terms of convergence time 

and classification accuracy compared to other algorithms, whereas MWO was better or in par 

with other algorithms. 

The application of MWO algorithm to other pattern-classification problems such as iris 

datasets is currently ongoing work. In addition, the future work considers the dynamic and 

self-adaptive techniques of adjusting the shape parameter  of the Le´vy distribution to 

improve the classification accuracy. 
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APPENDIX A: 

The list of equations used in MWO algorithm (An, Kang, Wang, & Wu, 2012) 

Eq. No. Formula Parameters Description 

Eq. (1) Dij  ‖ i    j‖ = [∑   ik–   jk 
 

 

   
]

   

i, j  NN 
Dij: spatial distance  between mussels mi 

and mj in S
d
. 

N: number of mussels. 

Eq. (2) {
 s            i, j   N{ ij   }  

 l            i, j   N{ ij   }   
 

rs: short-range reference. rl: long-range 

reference.   and   are positive constant 

coefficients with  < . 

   i, j   N{ ij   }is the maximum distance 

among all mussels at iteration t. 

 : scale factor of space, which depends 

on the problem to be solved. 

Eq. (3) ζsi    (Di<rs) / (rsN) 
ζsi: short-range density, ζli: long-range 

density. Where        is used to 

compute the count in set A satisfying 

a<b; a A; Di is the distance matrix from 

mussel mi to other mussels in the 

population. 

Eq. (4) ζli    (Di<rl) / (rlN) 

Eq. (5) Pi  {
        ζsi+ cζli  >z

                           
 

a, b, and care positive constant 

coefficients. 

zis a value randomly sampled from the 

uniform distribution [0,1]. 

Eq. (6) li   γ [        ]      ⁄   

li : step length ,   : is the shape parameter, 

which it is known as the Le´vy exponent 

or scaling exponent that determines the 

movement strategy;          . 

γ : the walk scale factor. 

Eq. (7)   i   {
    i        i        

                         i           
 

  i : new mussel-position coordinate. 

xi : current mussel-position coordinate. 

xg : best mussel-position coordinate. 

  = xi - xg. 

 

 


